Computing arboreal Galois groups of some PCF polynomials

Arboreal Galois groups and Odoni’s Conjecture

Robert L. Benedetto*
Jamie Juul

Amherst College

A Showcase of Number Theory at Liberal Arts College
JMM San Diego, Thursday, January 11, 2018
Notation

- K is a field, usually a number field
- \overline{K} is the algebraic closure of K
- $f \in K[z]$ is a polynomial of degree $d \geq 2$
- $f^n = f \circ f \circ \cdots \circ f$ is the n-th iterate of f
- $f^{-n}(x_0) = (f^n)^{-1}(x_0)$ is the set of n-th preimages of x_0 under f. That is, the set of roots of $f^n(z) - x_0 = 0$.

Goal: Given $x_0 \in K$, to understand the action of Galois on the backward orbit

$$\{x_0\} \cup f^{-1}(x_0) \cup f^{-2}(x_0) \cup \cdots$$
A Tower of Extension Fields

Fix $f \in K[z]$ of degree $d \geq 2$, and fix $x_0 \in K$.

For each $n \geq 0$, let $K_n = K(f^{-n}(x_0))$ and $G_n = \text{Gal}(K_n/K)$.

G_n is called an arboreal Galois group.
A Misleadingly Simple Example

\[K = \mathbb{Q}, \quad f(z) = z^2, \quad \text{and} \quad x_0 = -1. \]

\[G_1 \cong C_2, \quad \text{and} \quad G_2 \cong C_2 \times C_2. \quad \text{In general,} \quad G_n \cong (\mathbb{Z}/2^{n+1}\mathbb{Z})^\times \]
A More Complicated Example

\[K = \mathbb{Q}, \; f(z) = z^2 - 3, \; \text{and} \; x_0 = -1. \]

\[G_1 \cong C_2, \; \text{and} \; G_2 \cong D_4. \] In general, \(G_n \) consists of (all?) automorphisms of the \(n \)-level tree.
$T_{d,n}$ and $\text{Aut}(T_{d,n})$

Let $T_n = T_{d,n}$ be a rooted d-ary tree with n levels, and let $\text{Aut}(T_n)$ be its automorphism group.

\[
\text{Aut}(T_1) \cong S_d, \quad \text{Aut}(T_2) \cong S_d \wr S_d, \quad \text{and} \quad \text{Aut}(T_n) \cong [S_d]^n.
\]

Note: $|\text{Aut}(T_n)| = (d!)^{1+d+d^2+\ldots+d^{n-1}}$.
How big is G_n in $\text{Aut}(T_{d,n})$?

Because each $\sigma \in G_n$ is completely determined by its action on the roots of $f^n(z) - x_0$,

$$G_n \text{ is isomorphic to a subgroup of } \text{Aut}(T_{d,n}).$$

Question: How big a subgroup of $\text{Aut}(T_{d,n})$?

Expected answer: It should be (essentially) all of $\text{Aut}(T_{d,n})$, unless there is an obvious reason why it can’t be.

Note: There is a long list of “obvious” reasons why $[\text{Aut}(T_{d,n}) : G_n]$ would be unbounded as $n \rightarrow \infty$, e.g. that f is **postcritically finite**.

Conjecture (Odoni, 1985)

*For every degree $d \geq 2$, there is a polynomial $f(x) \in \mathbb{Q}[z]$ of degree d and $x_0 \in \mathbb{Q}$ such that $G_n \cong \text{Aut}(T_{d,n})$ for all $n \geq 0$.***
Some past results

- Odoni (1985) proves $G_n \cong \text{Aut}(T_{d,n})$ for a generic polynomial of degree d, and for a specific degree 2 polynomial over \mathbb{Q}.
- Stoll (1992) extends Odoni’s method to infinitely many degree 2 polynomials over \mathbb{Q}.
- Jones (early 2000s) proves various bounded index results assuming each $f^n(z) - x_0$ is irreducible over K.
- Pink (2013), Juul (2014), Juul-Kürlberg-Madhu-Tucker (2015) prove $G_n \cong \text{Aut}(T_{d,n})$ results when K is a function field, under various restrictions on f and x_0.
- Gratton-Nguyen-Tucker (2013) and Bridy-Tucker (2017) prove bounded index for non-PCF quadratic and cubic $f \in K[x]$ under various restrictions on f; for number fields, conditional on abc-conjecture for K or Vojta Conjecture.
-Looper (2016) proves Odoni’s Conjecture over \mathbb{Q} for prime degree $d = p$, using $f(z) = z^p + kpz^{p-1} - kp$ and $x_0 = 0$.
Arbitrary Degree

Theorem (RB, Juul, 2018)

For any $d \geq 2$, there is a polynomial $f \in \mathbb{Q}[z]$ of degree d and a point $x_0 \in \mathbb{Q}$ such that $G_n \cong \text{Aut}(T_{d,n})$, where

$$K_n = \mathbb{Q}(f^{-n}(x_0)), \quad \text{and} \quad G_n = \text{Gal}(K_n/\mathbb{Q}).$$

We use $x_0 = \frac{b}{a}$, and $f \in \mathbb{Q}[z]$ of the form either

$$f(z) = az^d - bz^{d-1} \quad \text{or} \quad f(z) = a^2 z^d - b^2 z^{d-2}.$$

Either way, we have $x_0 \mapsto 0 \mapsto 0$.
Discriminants of iterates

Recall: the discriminant of a polynomial $f(z) = Az^d + \cdots$ with roots $\alpha_1, \ldots, \alpha_d$ is

$$\text{Disc}(f) = \Delta(f) = a^{2d-2} \prod_{i<j} (\alpha_i - \alpha_j)^2$$

$$= (-1)^{d(d-1)/2} d^d A^{d-1} \prod_{f'(\beta)=0} f(\beta).$$

Let $C = (-1)^{d(d-1)/2} d^d A^{d-1}$. Then for any $n \geq 0$,

$$\Delta(f^{n+1}(z) - x_0) = C^d \left[\Delta(f^n(z) - x_0) \right]^d \prod_{f'(\beta)=0} (f^{n+1}(\beta) - x_0).$$

Moral: To get a prime p to ramify in K_{n+1} but not in K_n, want $f^{n+1}(\text{crit.pt.}) \equiv x_0 \pmod{p}$, but $f^{\ell}(\text{crit.pt.}) \not\equiv x_0 \pmod{p}$ for $1 \leq \ell \leq n$.
Outline of the proof that $G_n \cong \text{Aut}(T_n)$

Recall $f(z) = a^{d-m}z^d - b^{d-m}z^m$ with $x_0 = \frac{b}{a}$.

We proceed by induction on $n \geq 0$. Assuming it’s true for n:

Step 1. Show that there is a prime $p \nmid ab$ that ramifies in K_{n+1}, but not in K_n. (Use forward orbit of critical point(s) modulo p.)

Step 2. For $\alpha \in f^{-n}(x_0)$, show $\text{Gal} \left(\mathbb{Q}(f^{-1}(\alpha))/\mathbb{Q}(\alpha) \right) \cong S_d$

Step 3. Use Step 1 and the particular dynamics of f to show that the inertia group $I_{n+1}(p) \subseteq G_{n+1}$ contains a transposition.

The result is now immediate by group theory.
Step 1: For each n, a new prime $p \nmid ab$ ramifies in K_{n+1}

Use a strategically chosen modulus N so that

$$\prod_{f'(\beta) \neq 0} (f^{n+1}(\beta) - x_0)$$

is never a square modulo N.

(After adjusting for contributions from bad primes.)

Thus, for every n, there is a prime $p \nmid ab$ that ramifies in K_{n+1}.

On the other hand, since $x_0 \mapsto 0 \mapsto 0$, no p' that ramified in some previous K_ℓ can ramify in K_{n+1}. So p is a newly ramified prime.
Step 2: \(G = \text{Gal} \left(\mathbb{Q}(f^{-1}(\alpha))/\mathbb{Q}(\alpha) \right) \cong S_d \)

\[
f(z) = p_2^{d-m}z^d - p_1^{d-m}z^m \quad \text{and} \quad x_0 = \frac{p_1}{p_2}.
\]

\(f^{n+1}(z) - x_0 \) is Eisenstein at \(p_1 \). So for \(\alpha \in f^{-n}(x_0) \), \(f(z) - \alpha \) is Eisenstein at \(p_1 \); so irreducible over \(\mathbb{Q}(\alpha) \).

So \(G \) acts transitively on \(f^{-1}(\alpha) \)

\(f^{n+1}(z) - x_0 \) has a degree-\(m^{n+1} \) factor over \(\mathbb{Q}_{p_2} \) that is totally ramified at \(p_2 \).

So \(f(z) - \alpha \) has a degree \(m \) irreducible factor over \(\mathbb{Q}(\alpha)_{p_2} \).

So \(G \) contains a subgroup that acts transitively on an \(m \)-element subset of \(f^{-1}(\alpha) \).

By Step 3 (to come), \(G \) contains a transposition. Assuming \((m, d) = 1 \) and \(m > d/2 \), can prove \(G = S_d \).
Step 3: The inertia group $I(p) \subseteq G_{n+1}$ contains a transposition

Since p ramifies in K_{n+1} but not in K_n, there must be some nontrivial $\sigma \in \text{Gal}(K_{n+1}/K_n) \cap I_{n+1}(p)$.

σ permutes those $\alpha \in f^{-(n+1)}(x_0)$ that are critical points mod p.

Now use simple facts about the critical orbits of f to show that there are only two such α.
Recap: the Main Theorem

Theorem (RB, Juul, 2018)

For any $d \geq 2$, there is a polynomial $f \in \mathbb{Q}[z]$ of degree d and a point $x_0 \in \mathbb{Q}$ such that $G_n \cong \text{Aut}(T_{d,n})$, where

$$K_n = \mathbb{Q}(f^{-n}(x_0)),$$

and

$$G_n = \text{Gal}(K_n/\mathbb{Q}).$$

Thank you!