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Regular Polygons

Definition
A polygon is a planar region R bounded by a finite number of
straight line segments that together form a loop.

If all the line segments are congruent, and all the angles between
the line segments are also congruent, we say R is a regular
polygon.



Polyhedra

Definition
A polyhedron is a spatial region S bounded by a finite number of
polygons meeting along their edges, and so that the interior is a
single connected piece.

So these are not polyhedra:

But these are:



Regular Polyhedra

Definition
Let S be a polyhedron. If

I all the faces of S are regular polygons,

I all the faces of S are congruent to each other, and

I all the vertices of S are congruent to each other,

we say S is a regular polyhedron.

Cube (Regular Hexahedron) Regular Octahedron



Another Regular Polyhedron

Regular Tetrahedron



Two More Regular Polyhedra

Regular Dodecahedron Regular Icosahedron



And They’re Dual:



Some Ancient History (of Regular Polyhedra)

I Pythagoras of Samos, c.570–c.495 BCE: Knew about at
least three, and possibly all five, of these regular polyhedra.

I Theaetetus (Athens), 417–369 BCE: Proved that there are
exactly five regular polyhedra.

I Plato (Athens), c.426–c.347 BCE: Theorizes four of the solids
correspond to the four elements, and the fifth (dodecahedron)
to the universe/ether.

I Euclid (Alexandria), 3xx–2xx BCE: Book XIII of The Elements
discusses the five regular polyhedra, and gives a proof
(presumably from Theaetetus) that they are the only five.

The five regular polyhedra are often called the Platonic solids.



There Can Be Only Five: Setup

Let S be a regular polyhedron. Define integers n, k by:

I the faces of S are regular n-gons

I k faces meet at each vertex

1. n ≥ 3 and k ≥ 3.

2. S is completely determined by the numbers n and k .

3. S must be convex: For any two points in S , the whole line
segment between the two points is contained in S .

4. Since S is convex, the total of angles meeting at a vertex of S
is less than 360 degrees.

5. Each angle of a regular n-gon has measure

(
180(n − 2)

n

)◦
.

[Triangle: 60◦, Square: 90◦, Pentagon: 108◦, Hexagon: 120◦.]



There Can Be Only Five: Payoff Part 1

Faces of S are regular n-gons and k faces meet at each vertex

n, k ≥ 3, but total angles at each vertex must be less than 360◦.

n = 3 (triangles)

k = 3 triangles per vertex: Tetrahedron

k = 4 triangles per vertex: Octahedron

k = 5 triangles per vertex: Icosahedron

k ≥ 6 triangles per vertex: NO! Angles ≥ 360◦



There Can Be Only Five: Payoff Part 2

Faces of S are regular n-gons and k faces meet at each vertex

n, k ≥ 3, but total angles at each vertex must be less than 360◦.

n = 4 (squares)

k = 3 squares per vertex: Cube

k ≥ 4 squares per vertex: NO! Angles ≥ 360◦



There Can Be Only Five: Payoff Part 3

Faces of S are regular n-gons and k faces meet at each vertex

n, k ≥ 3, but total angles at each vertex must be less than 360◦.

n = 5 (pentagons)

k = 3 pentagons per vertex: Dodecahedron

k ≥ 4 pentagons per vertex: NO! Angles > 360◦

n ≥ 6 (hexagons and more)

k ≥ 3 n-gons per vertex: NO! Angles ≥ 360◦



There Can Be Only Five: Summary of the Proof

Faces of S are regular n-gons and k faces meet at each vertex

n, k ≥ 3, but total angles at each vertex must be less than 360◦.

n
k

3 4 5 ≥ 6

3 —

4 — — —

5 — — —

≥ 6 — — — —



The Five Regular Polyhedra

Faces of S are regular n-gons and k faces meet at each vertex

Possible choices for (n, k):



But What About This Solid?

Cuboctahedron

I Known to Plato

I Definitely not regular (squares and triangles), but:

I All faces are regular polygons, and

I All the vertices are congruent to each other.



Semiregular Polyhedra

Definition
Let S be a polyhedron. If

I all the faces of S are regular polygons, and

I all the vertices of S are congruent to each other,

we say S is a semiregular polyhedron.

[Same as definition of regular polyhedron, except the faces don’t
need to be congruent to each other.]

Question: How many (non-regular) semiregular polyhedra are
there?

Answer: Infinitely many.



Prisms

Definition
Let n ≥ 3. An n-gonal prism is the solid obtained by connecting
two congruent regular n-gons by a belt of n squares.

Modified Question: How many (non-regular) semiregular
polyhedra are there besides the prisms?

Answer: Still infinitely many.



Antiprisms

Definition
Let n ≥ 3. An n-gonal antiprism is the solid obtained by
connecting two congruent regular n-gons by a belt of 2n equilateral
triangles.

Re-Modified Question: How many semiregular polyhedra are
there besides the regular polyhedra, prisms, and antiprisms?

Answer: FINALLY that’s the right question. Archimedes says: 13.



Archimedean Solids

Definition
An Archimedean solid is a semiregular polyhedron that is not
regular, a prism, or an antiprism.

I Archimedes of Syracuse, 287–212 BCE: Among his many
mathematical contributions, described the 13 Archimedean
solids. But this work is lost. We know of it only through:

I Pappus of Alexandria, c.290–c.350 CE: One of the last
ancient “Greek” mathematicians. Describes the 13
Archimedean solids in Book V of his Collections. But he
gives no proof!

I

Johannes Kepler (Germany/Austria), 1571–1630 CE:
Rediscovered the 13 Archimedean solids. In his book
Harmonices Mundi (1619), he gave the first surviving
proof that there are only 13.



Cuboctahedron and Icosidodecahedron



Adding Some Squares

Rhombicuboctahedron Rhombicosidodecahedron



Truncating Regular Polyhedra

To truncate a polyhedron means to slice off its corners.

Truncated Tetrahedron Truncated Cube



More Truncated Regular Polyhedra

Truncated Octahedron Truncated Dodecahedron



Truncated Icosahedron



Truncation FAIL

If you truncate, say, the cuboctahedron, you don’t quite get regular
polygons — the sliced corners give non-square rectangles.



Fixing a Failed Truncation

But if you squish the rectangles into squares, you can get regular
polygons all around. Same deal for truncating the
icosidodecahedron:

Truncated Cuboctahedron Truncated Icosidodecahedron
a.k.a.

Great Rhombicuboctahedron, Great Rhombicosidodecahedron



And Two More

Adding more triangles to the cuboctahedron (or cube) and to the
icosidodecahedron (or dodecahedron) gives:

Snub Cube Snub Dodecahedron

Note: Unlike all the others, these two are not mirror-symmetric.



Why Are There Only Thirteen?

Kepler’s proof for Archimedean solids is similar in spirit to
Theaetetus’ proof for Platonic solids, but of course it’s longer and
more complicated.

I’ll give a sketch based on the description of Kepler’s proof in
Chapter 4 of Polyhedra, by Peter Cromwell. (Cambridge U Press,
1997).

Goal: Given a semiregular polyhedron S , we want to show the
arrangement of polygons around each vertex agrees with one of the
specific examples we already know about.



Some Notation

To describe the arrangement of polygons at a vertex, let’s write

[a, b, c , . . .]

to indicate that there’s an a-gon, then a b-gon, then a c-gon, etc.,
as we go around the vertex.

Example: The truncated cube is [8, 8, 3], and the
icosidodecahedron is [3, 5, 3, 5].

Warning: the order matters, but only up to rotating/reflecting. So
[8, 8, 3] = [8, 3, 8] = [3, 8, 8]

and
[3, 5, 3, 5] = [5, 3, 5, 3] 6= [3, 3, 5, 5].



Three Lemmas

Lemma 1. Suppose [a, b, c] is an arrangement for a semiregular
polyhedron. If a is odd, then b = c .

Lemma 2. Suppose [3, 3, a, b] is an arrangement for a semiregular
polyhedron. Then either a = 3 or b = 3. (Antiprism.)

Lemma 3. Suppose [3, a, b, c] is an arrangement for a semiregular
polyhedron. If a, c 6= 3, then a = c .



Proof of Lemma 1

Lemma 1. Suppose [a, b, c] is an arrangement for a semiregular
polyhedron. If a is odd, then b = c .

a-gon

(a odd)

b c

b

c

b

c

b

c

b



Reminder of the Three Lemmas

Lemma 1. Suppose [a, b, c] is an arrangement for a semiregular
polyhedron. If a is odd, then b = c .

Lemma 2. Suppose [3, 3, a, b] is an arrangement for a semiregular
polyhedron. Then either a = 3 or b = 3. (Antiprism.)

Lemma 3. Suppose [3, a, b, c] is an arrangement for a semiregular
polyhedron. If a, c 6= 3, then a = c .



Sketch of the Proof

There are now a whole lot of cases to consider, depending on what
sorts of polygonal faces the solid S has:

1. 2 sorts: Triangles and Squares.

2. 2 sorts: Triangles and Pentagons.

3. 2 sorts: Triangles and Hexagons.

4. 2 sorts: Triangles and n-gons, with n ≥ 7.

5. 2 sorts: Squares and n-gons, with n ≥ 5.

6. 2 sorts: Pentagons and n-gons, with n ≥ 6.

7. 3 sorts: Triangles, Squares, and n-gons, with n ≥ 5.

8. 3 sorts: Triangles, m-gons, and n-gons, with n > m ≥ 5.

9. 3 sorts: `-gons, m-gons, and n-gons, with n > m > ` ≥ 4.

10. 2 or 3 sorts, all with ≥ 6 sides each.

11. ≥ 4 sorts of polygons.

And most of these cases have multiple sub-cases.



Example: Case 2: Triangles and Pentagons as faces

One pentagon at each vertex:

I [3, 3, 5]: Impossible by Lemma 1: 3 odd, 3 6= 5.

I [3, 3, 3, 5]: Pentagonal Antiprism

I [3, 3, 3, 3, 5]: Snub Dodecahedron

I ≥ 5 triangles and 1 pentagon: NO; angles total > 360◦.

Two pentagons at each vertex:

I [3, 5, 5] = [5, 5, 3]: Impossible by Lemma 1: 5 odd, 5 6= 3.

I [3, 3, 5, 5]: Impossible by Lemma 2: 5, 5 6= 3

I [3, 5, 3, 5]: Isocidodecahedron

I ≥ 3 triangles and 2 pentagons: NO; angles total > 360◦.

≥ 3 pentagons at each vertex:

I ≥ 1 triangle(s) and ≥ 3 pentagons: NO; angles total > 360◦.



Reminder: The Outline of the Proof

Sorts of polygonal faces the solid S has:

1. 2 sorts: Triangles and Squares.

2. 2 sorts: Triangles and Pentagons.

3. 2 sorts: Triangles and Hexagons.

4. 2 sorts: Triangles and n-gons, with n ≥ 7.

5. 2 sorts: Squares and n-gons, with n ≥ 5.

6. 2 sorts: Pentagons and n-gons, with n ≥ 6.

7. 3 sorts: Triangles, Squares, and n-gons, with n ≥ 5.

8. 3 sorts: Triangles, m-gons, and n-gons, with n > m ≥ 5.

9. 3 sorts: `-gons, m-gons, and n-gons, with n > m > ` ≥ 4.

10. 2 or 3 sorts, all with ≥ 6 sides each.

11. ≥ 4 sorts of polygons.

Each case is of the same general flavor as “Case 2” that we just
did.



A Twist

OK, so the proof is done. But what about this:

This new solid has only squares and triangles for faces, and each
vertex has 3 squares and 1 triangle, with the same set of angles
between them.

It is called the Elongated Square Gyrobicupola or
Pseudorhombicuboctahedron.



The Pseudorhombicuboctahedron

First known appearance in print: Duncan Sommerville, 1905.

Rediscovered by J.C.P. Miller, 1930. (Sometimes called “Miller’s
solid”).

But it’s not usually considered an Archimedean solid.



Two Questions

1. Why did Kepler’s proof miss the PRCOH?

A: Unlike regular polyhedra, a convex polyhedron with the same
arrangement of regular polygons at each vertex is not completely
determined by the arrangement of polygons around each vertex.

2. So why isn’t the PRCOH considered semiregular?

A: Because we (like the ancients) were vague about what “all
vertices are congruent” means.

I Is it just the faces meeting at the vertex that look the same?

I Or is that the whole solid looks the same if you move one
vertex to where another one was?

Although terminology varies, there is general agreement that the
nice class (usually called either “semiregular” or “uniform”) should
use the “whole solid” definition. So the PRCOH is not an
Archimedean solid.



Another look at the RCOH and PRCOH



Counting Vertices, Edges, and Faces

Let’s count how many vertices, edges, and faces these solids have:

V E F V E F

TH 4 6 4 T.TH 12 18 8
Cu 8 12 6 T.Cu 24 36 14
OH 6 12 8 T.OH 24 36 14
DH 20 30 12 T.DH 60 90 32
IH 12 30 20 T.IH 60 90 32

COH 12 24 14 IDH 30 60 32
RCOH 24 48 26 RIDH 60 120 62
T.COH 48 72 26 T.IDH 120 180 62

S.Cu 24 60 38 S.DH 60 150 92

V E F V E F

n-Pr 2n 3n n + 2 n-APr 2n 4n 2n + 2

Euler observes: V − E + F = 2.



Euler’s Polyhedron Formula

Leonhard Euler (Switzerland/Russia/Germany),
1707–1783 CE: Among many, many, MANY
other things, showed (1750):

Theorem
Let S be a convex polyhedron, with V vertices, E edges, and F
faces. Then V − E + F = 2.

Key idea of proof: If you change a polyhedron by:

I adding a vertex somewhere in the middle of an edge,

I cutting a face in two by connecting two nonadjacent vertices
with a new edge,

I reversing either of the above two kinds of operations, or

I bending or stretching it,

the quantity V − E + F remains unchanged.



Regular Polyhedra Revisited
Let S be a regular polyhedron with m faces, and with k regular
n-gons meeting at each vertex. Then:

V =
mn

k
, E =

mn

2
, F = m.

So

2 = V − E + F =
mn

k
− mn

2
+ m = mn

(
1

k
− 1

2
+

1

n

)
.

In particular,
1

k
− 1

2
+

1

n
> 0, i.e.,

1

n
+

1

k
>

1

2
.

And it’s not hard to show that the only pairs of integers (n, k) with

n, k ≥ 3 and
1

n
+

1

k
>

1

2
are:


