Equilibrium measures on the Berkovich projective line

Rob Benedetto, Amherst College

Saturday, February 29, 2020

Weil heights over number fields

The (standard) Weil height on \mathbb{Q} is

$$higg(rac{a}{b}igg) := \log \max\{|a|,|b|\} \quad ext{for } a,b \in \mathbb{Z} ext{ relatively prime}.$$

Equivalently, $h(x) = \sum_{v \in M_{\mathbb{Q}}} \log \max\{|x|_v, 1\}$, so we can generalize to

$$h(x) = \frac{1}{[K:\mathbb{Q}]} \sum_{v \in M_K} [K_v:\mathbb{Q}_v] \log \max\{|x|_v, 1\} \quad \text{for } x \in \overline{\mathbb{Q}}$$

for $x \in K$ with $[K : \mathbb{Q}] < \infty$.

Note: For any $\phi \in \overline{\mathbb{Q}}(z)$ with $\deg(\phi) = d \ge 1$, we have

$$h(\phi(x)) = d \cdot h(x) + O_{\phi}(1).$$

Canonical heights

Let $\phi \in \overline{\mathbb{Q}}(z)$ with $\deg(\phi) = d \geq 2$. The **canonical height** for ϕ is

$$\hat{h}_{\phi}(x) := \lim_{n \to \infty} d^{-n} h(\phi^{n}(x)).$$

Facts: for all $x \in \mathbb{P}^1(\overline{\mathbb{Q}})$:

- $\hat{h}_{\phi}(x) = h(x) + O_{\phi}(1)$
- $\hat{h}_{\phi}(\phi(x)) = d \cdot \hat{h}_{\phi}(x)$
- $\hat{h}_{\phi}(x) = 0 \Longleftrightarrow x$ is preperiodic under ϕ

 \hat{h}_ϕ can be decomposed as a sum of **local canonical heights**:

$$\hat{h}_{\phi}(x) = rac{1}{[\mathcal{K}:\mathbb{Q}]} \sum_{v \in \mathcal{M}_{\mathcal{K}}} [\mathcal{K}_{v}:\mathbb{Q}_{v}] \hat{\lambda}_{\phi,v}(x) \quad ext{for } x \in \overline{\mathbb{Q}}$$

for $x \in K$ with $[K : \mathbb{Q}] < \infty$.

Points of small canonical height

Recall $\hat{h}_{\phi}(x) = 0 \Longleftrightarrow x$ is preperiodic. What if $\hat{h}_{\phi}(x) > 0$ is small?

Example.
$$\phi(z) = -\frac{25}{24}z^3 + \frac{97}{24}z + 1$$
 with $x = -\frac{7}{5}$:
 $-\frac{7}{5} \mapsto -\frac{9}{5} \mapsto -\frac{1}{5} \mapsto \frac{1}{5} \mapsto \frac{9}{5} \mapsto \frac{11}{5} \mapsto -\frac{6}{5} \mapsto -\frac{41}{20} \mapsto \frac{4323}{2560} \mapsto \dots$

has $\hat{h}_{\phi}(-7) = 0.0011\dots$

Example.
$$\phi(z) = \frac{7z^2 - 15z + 2}{49z^2 - 39z + 2}$$
 with $x = \infty$:
 $\infty \mapsto \frac{1}{7} \mapsto 0 \mapsto 1 \mapsto -\frac{1}{2} \mapsto \frac{1}{3} \mapsto \frac{2}{5} \mapsto \frac{1}{2} \mapsto \frac{5}{7} \mapsto 6$
 $\mapsto \frac{41}{383} \mapsto -\frac{2320}{7889} \mapsto \frac{3465767}{8746087} \mapsto \cdots$

has $\hat{h}_{\phi}(\infty) = 0.003606\dots$

A brief review of some measure theory

Let X be a topological space (think \mathbb{P}^1_{an} or $\mathbb{P}^1(\mathbb{C})$).

- The Borel σ-algebra B on X is the set of all subsets of X generated from open sets by allowing complements and countable unions.
- ▶ A signed (Borel) measure μ on X is a function $\mu: \mathcal{B} \to \mathbb{R}$ such that
 - \blacktriangleright $\mu(\varnothing)=0$, and
 - ▶ $\mu(E_1 \cup E_2 \cup \cdots) = \mu(E_1) + \mu(E_2) + \cdots$ for any countable set $\{E_n\}_{n\geq 1}$ of pairwise disjoint elements of \mathcal{B} .

Note: we require μ to take on only **finite** values.

- If $\mu \ge 0$ with $\mu(X) = 1$, we call μ a (Borel) **probability** measure.
- For any $a \in X$, the **delta-measure** at a is the probability measure

$$\delta_{a}(U) := \begin{cases} 1 & \text{if } a \in U, \\ 0 & \text{if } a \notin U. \end{cases}$$

Integration

Given a (signed Borel) measure μ on X, we can define integrals

$$\int_X f \, d\mu = \int_X f(x) \, d\mu(x)$$

for measurable functions $f: X \to \mathbb{R}$.

Theorem (Riesz Representation)

Let X be a locally compact Hausdorff space. Then

$$M_{\mathsf{Rad}}(X) \stackrel{\sim}{\longrightarrow} C_c(X)^{\vee}$$
 by $\mu \mapsto \left[f \mapsto \int_X f \ d\mu \right]$

Recall:

A signed Borel measure μ is $\bf Radon$ if it satisfies certain technical regularity properties.

$$C_c(X) = \{f : X \to \mathbb{R} \text{ continuous, with compact support}\}.$$

So
$$C_c(X)^{\vee} = \{L : C_c(X) \to \mathbb{R} \text{ linear}\}.$$

Pushforward Measures

Let X be a topological space (think \mathbb{P}^1_{an} or $\mathbb{P}^1(\mathbb{C})$), let μ be a signed Borel measure on X, and let $\phi: X \to X$ be a measurable function (think $\phi \in \mathbb{C}_{\nu}(z)$ or $\phi \in \mathbb{C}(z)$).

The **pushforward measure** $\phi_*\mu$ is the signed Borel measure

$$\phi_*\mu(U):=\mu\big(\phi^{-1}(U)\big).$$

▶ If $f: X \to \mathbb{R}$ is measurable, then

$$\int_X f d(\phi_* \mu) = \int_X (f \circ \phi) d\mu.$$

- If μ is a probability measure (i.e., if $\mu \geq 0$ and $\mu(X) = 1$), then so is $\phi_*\mu$.
- $(\phi \circ \psi)_* \mu = \phi_* (\psi_* \mu).$



Pullback Measures

Now specifically set $X=\mathbb{P}^1(\mathbb{C})$ or $X=\mathbb{P}^1_{\mathsf{an}}$, and $\phi\in\mathbb{C}(z)$ or $\phi\in\mathbb{C}_{\mathsf{v}}(z)$ nonconstant.

Given a signed Radon Borel measure μ , the **pullback measure** $\phi^*\mu$ is the signed Radon Borel measure such that

$$\int_X f d(\phi^* \mu) = \int_X \sum_{y \in \phi^{-1}(x)} (\deg_y \phi) \cdot f(y) d\mu(x).$$

Example.
$$\phi^* \delta_a = \sum_{b \in \phi^{-1}(a)} (\deg_b \phi) \delta_b$$
.

- ▶ If μ is a probability measure, then so is $\frac{1}{\deg \phi} \phi^* \mu$.
- $(\phi \circ \psi)^* \mu = \psi^* (\phi^* \mu).$

Some Properties

- ightharpoonup supp $(\phi_*\mu)=\phi(\operatorname{supp}(\mu))$
- $\blacktriangleright \operatorname{supp} \left(\phi^* \mu \right) = \phi^{-1} \left(\operatorname{supp} (\mu) \right)$
- More specifically, for any $a \in \mathbb{P}^1_{an}$,

$$\phi_*\delta_a = \delta_{\phi(a)}$$
 and $\phi^*\delta_a = \sum_{b \in \phi^{-1}(a)} (\deg_b \phi)\delta_b.$

- If $\phi^*\mu = (\deg \phi)\mu$, then we get $\phi_*\mu = \mu$ for free, from the previous line.

(A pair (T, μ) where $T: X \to X$ satisfies $T_*\mu = \mu$, i.e., $\mu(T^{-1}(U)) = \mu(U)$, is a central object of study in ergodic theory. We say T is measure-preserving w.r.t. μ , and μ is invariant w.r.t. T.)

The Invariant/Canonical/Equilibrium Measure

Theorem (Favre & Rivera-Letelier; Baker & Rumely; Autissier, Chambert-Loir, & Thuiller, mid 2000s)

Let \mathbb{C}_{ν} be a complete and algebraically closed non-archimedean field, and let $\phi \in \mathbb{C}_{\nu}(z)$ be a rational function of degree $d \geq 2$. Then there is a unique probability measure μ_{ϕ} on $\mathbb{P}^1_{\mathsf{an}}$ with the following properties:

- $ightharpoonup \phi^* \mu_{\phi} = \mathbf{d} \cdot \mu_{\phi}$, and
- $\blacktriangleright \ \mu_{\phi}(E_{\phi})=0,$

where $E_{\phi} \subseteq \mathbb{P}^1(\mathbb{C}_{\nu})$ is the (type I) exceptional set of ϕ . Moreover, we have $supp(\mu_{\phi}) = \mathcal{J}_{\phi,an}$.

Note: $E_{\phi} = \{\infty\}$ for a polynomial $\phi \in \mathbb{C}_{\nu}[z]$, and $E_{\phi} = \{0, \infty\}$ for $\phi(z) = z^m$, $m \in \mathbb{Z}$. For ϕ not conjugate to such a map, $E_{\phi} = \emptyset$.

Weak Convergence of Measures

Definition

Let X be a topological space, and let $\{\mu_n\}_{n\geq 1}$ be a sequence of signed Borel measures on X. We say that $\{\mu_n\}$ converges weakly to a signed Borel measure μ if for every continuous function $f:X\to\mathbb{R}$ with compact support,

$$\lim_{n\to\infty}\int_X f\,d\mu_n=\int_X f\,d\mu.$$

Example

 $X=\mathbb{R}.$ Then $\{\delta_{1/n}\}_{n\geq 1}$ converges weakly to δ_0 , because for any $f\in \mathcal{C}_c(\mathbb{R})$,

$$\lim_{n\to\infty}\int_{\mathbb{R}}f\,d\delta_{1/n}=\lim_{n\to\infty}f\Big(\frac{1}{n}\Big)=f(0)=\int_{\mathbb{R}}f\,d\delta_{0}.$$

Note: The assumption that f is continuous is **crucial** here.

Definition of the Equilibrium Measure

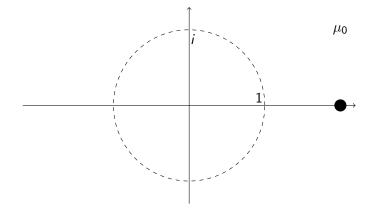
Given $\phi \in \mathbb{C}_{\nu}(z)$ of degree $d \geq 2$, choose any point $\xi \in \mathbb{P}^1_{an}$ that is **not** an exceptional point in $\mathbb{P}^1(\mathbb{C}_{\nu})$.

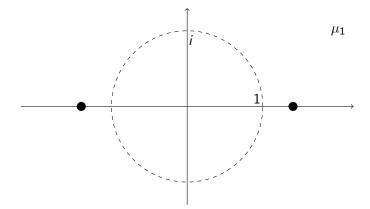
Set $\mu_0 := \delta_{\xi}$, and for each $n \ge 1$, set

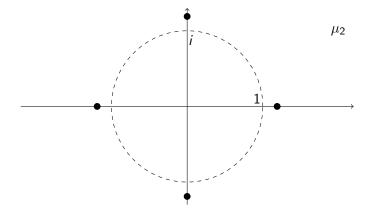
$$\mu_n := \frac{1}{d} \phi^* \mu_{n-1} = \frac{1}{d^n} (\phi^n)^* \delta_{\xi}.$$

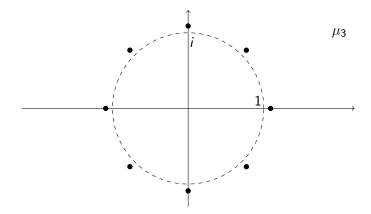
Thus, μ_n is a probability measure with support supp $(\mu_n) = \phi^{-n}(\xi)$.

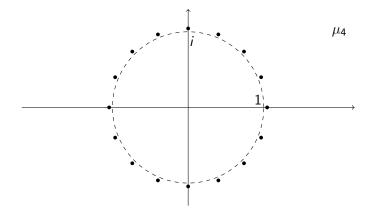
Then the sequence $\{\mu_n\}_{n\geq 0}$ converges weakly to a measure, and this measure is the equilibrium measure $\mu=\mu_{\phi}$.

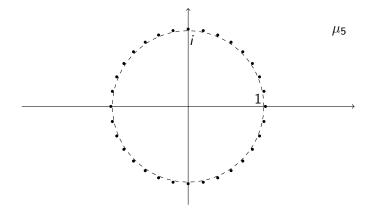


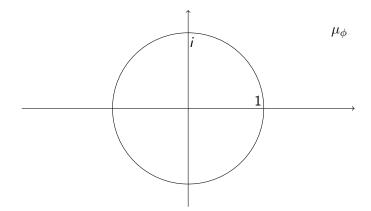












Complex Potential Theory in One Slide

Given a real-valued function $f \in C^2(\mathbb{C})$, recall the Laplacian of f is $\Delta f = \partial_x^2 f + \partial_y^2 f = 4 \partial_z \partial_{\overline{z}} f.$

Fact:
$$\int_{\mathbb{C}} g \, \Delta f \, dA = \int_{\mathbb{C}} f \, \Delta g \, dA \quad \text{for all} \quad g \in C_c^{\infty}(\mathbb{C}).$$

(By Green's Theorem. Intuition: $\int gf'' = -\int f'g' = \int fg''$.) For more general (nice enough) f, there is a unique (Radon) measure Δf such that

$$\int_{\mathbb{C}} g \, \Delta f = \int_{\mathbb{C}} f \, \Delta g \, dA \quad \text{for all} \quad g \in C_c^\infty(\mathbb{C}).$$

Examples:

$$\Delta(\log|z|) = 2\pi\delta_0.$$

 $\Delta(\log \max\{|z|,1\})$ is Lebesgue measure on the unit circle.

The Laplacian on \mathbb{P}^1_{an}

There is a metric on $\mathbb{P}^1_{an} \setminus \mathbb{P}^1(\mathbb{C}_v)$ as suggested by the tree: the distance from $\zeta(a,r)$ to $\zeta(a,s)$ is $|\log s - \log r|$.

Given a (nice enough) function $f: \mathbb{P}^1_{an} \to [-\infty, \infty]$, here's the **idea** of how to define Δf .

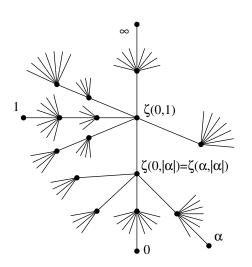
At a point ζ , for each direction \vec{u} emanating from ζ , we can define the directional derivative

$$D_{\vec{u}}f(\zeta)$$
 "=" $\lim_{h\to 0^+}\frac{f(\zeta+h\vec{u})-f(\zeta)}{h}$.

If S is the set of directions at ζ , then we define Δf to have a δ mass at ζ of mass $\sum_{\vec{r} \in \mathcal{E}} D_{\vec{u}} f(\zeta)$.

Equip a segment $[\zeta(a, r), \zeta(a, s)]$, which is isometric to $[\log r, \log s] \subseteq \mathbb{R}$, with Lebesgue measure λ .

Define Δf along $[\log r, \log s]$ to be just $f''(x)\lambda$.



Note: $\Delta f(\mathbb{P}^1_{an}) = 0$.

Example

Let $f(\zeta) = \text{``log max}\{|\zeta|_{\nu}, 1\}\text{''} = \log \max\{\|z\|_{\zeta}, 1\}.$

- ▶ f has constant value 0 on $\overline{D}_{an}(0,1)$.
- ▶ $f(\zeta(0,t)) = \log t$ for $t \ge 1$, so by isometrically identifying the segment from $\zeta(0,1)$ to ∞ with the real interval $[0,\infty]$, we have f(x) = x.
- ▶ f is constant (with value log t) on any side branch emanating from $\zeta(0, t)$.

So
$$\Delta f = \delta_{\zeta(0,1)} - \delta_{\infty}$$
.

Some Properties of the Laplacian

There is a space \mathcal{P} of "nice enough" functions $f: \mathbb{P}^1_{an} \to [-\infty, \infty]$ with

$$\Delta: \mathcal{P} \to \{ \mathsf{Radon\ measures\ on\ } \mathbb{P}^1_{\mathsf{an}} \}.$$

- Δ is linear.
- $ightharpoonup \Delta f = 0$ iff f is constant.
- ▶ $\Delta f = \Delta g$ iff f g is constant.

- ▶ If $f_n \to f$ uniformly on \mathbb{P}^1_{an} (and $|\Delta f_n|$ is uniformly bounded on \mathbb{P}^1_{an}), then $\Delta f_n \to \Delta f$ weakly.

(Note: weak convergence can also be proven from weaker assumptions.)

Idea of Proving Convergence

Write $\phi(z) = F(z)/G(z)$, and assume $\infty \notin E_{\phi}$. Let $u(\zeta) := d^{-1} \log \|G\|_{\zeta}$. (I.e., $u(x) = d^{-1} \log |G(x)|_{v}$.) Then $\Delta u = d^{-1}\phi^*(\delta_{\infty}) - \delta_{\infty}$.

For each $n \ge 1$, define $f_n := \sum_{i=0}^{n-1} d^{-i} \cdot u \circ \phi^i$.

Then

$$\Delta f_n = \sum_{i=0}^{n-1} d^{-i} \Delta (u \circ \phi^i) = \sum_{i=0}^{n-1} d^{-i} (\phi^i)^* (\Delta u)$$

$$= \sum_{i=0}^{n-1} \left[d^{-i-1} (\phi^{i+1})^* (\delta_{\infty}) - d^{-i} (\phi^i)^* (\delta_{\infty}) \right]$$

$$= d^{-n} (\phi^n)^* (\delta_{\infty}) - \delta_{\infty} = \mu_n - \delta_{\infty}$$

Proving Convergence, Continued: The Invariant Potential

$$\mu_n = d^{-n}(\phi^n)^*(\delta_\infty),$$

$$u(x) = d^{-1}\log|G(x)|_{\nu}, \qquad \Delta u = d^{-1}\phi^*(\delta_\infty) - \delta_\infty,$$

$$f_n = \sum_{i=0}^{n-1} d^{-i} \cdot u \circ \phi^i, \quad \text{with} \quad \Delta f_n = \mu_n - \delta_\infty.$$

Let
$$\hat{\lambda}_{\phi} := \lim_{n \to \infty} f_n = \sum_{n=0}^{\infty} d^{-n} u \circ \phi^n$$
, and $\mu_{\phi} := \Delta \hat{\lambda}_{\phi} + \delta_{\infty}$.

Then $f_n o \hat{\lambda}_\phi$, so $\Delta f_n o \Delta \hat{\lambda}_\phi$ weakly,

So $\mu_n := d^{-n}(\phi^n)^* \delta_\infty \to \mu_\phi$ weakly, and $\phi^* \mu_\phi = d \cdot \mu_\phi$.

Moreover,

$$\hat{\lambda}_{\phi} \circ \phi = \sum_{n \geq 0} d^{-n} u \circ \phi^{n+1} = d \cdot \sum_{n \geq 1} d^{-n} u \circ \phi^n = d \cdot (\hat{\lambda}_{\phi} - u).$$

So
$$\hat{\lambda}_{\phi}(\phi(x)) = d \cdot \hat{\lambda}_{\phi}(x) - \log |G(x)|_{\nu}$$
.

The Punchline

Let K be a **number** field, with set of places M_K .

Let
$$\phi(z) = F(z)/G(z) \in K(z)$$
 with deg $\phi = d \ge 2$.

For each $v \in M_K$, let $\hat{\lambda}_{\phi,v}$ be the v-adic invariant potential on $\mathbb{P}^1_{\mathrm{an}}$.

That is, $\Delta \hat{\lambda}_{\phi, \nu}$ is the equilibrium measure $\mu_{\phi, \nu}$ on $\mathbb{P}^1_{\mathsf{an}, \nu}$, and

$$\hat{\lambda}_{\phi,\nu}(\phi(x)) = d \cdot \hat{\lambda}_{\phi,\nu}(x) - \log |G(x)|_{\nu}.$$

Then
$$\hat{h}_{\phi}(x) := [K : \mathbb{Q}]^{-1} \sum_{v \in M_K} [K_v : \mathbb{Q}_v] \hat{\lambda}_{\phi,v}(x)$$
 satisfies
$$\hat{h}_{\phi}(\phi(x)) = d \cdot \hat{h}_{\phi}(x),$$

since $\sum_{\nu} [K_{\nu} : \mathbb{Q}_{\nu}] \log |G(x)|_{\nu} = 0$.

Fact: the individual functions $\hat{\lambda}_{\phi,\nu}$ are the local canonical height functions for ϕ , and \hat{h}_{ϕ} is the canonical height function for ϕ .

Equidistribution

Theorem (Baker-Rumely, Favre-Rivera-Letelier, mid-2000s)

Let K be a global field, let $\phi \in K(z)$, let $v \in M_K$ be a nontrivial absolute value on K, and let $\{x_n\}_{n\geq 1}$ be a sequence of **distinct** points in $\mathbb{P}^1(K^{\text{sep}})$ such that

$$\lim_{n\to\infty}\hat{h}_{\phi}(x_n)=0.$$

For each $n \ge 1$, let $X_n \subseteq \mathbb{P}^1(K^{\text{sep}})$ be the $\operatorname{Gal}(K^{\text{sep}}/K)$ -orbit of x_n , and define

$$\nu_n := \frac{1}{|X_n|} \sum_{y \in X_n} \delta_y.$$

which is a Borel probability measure on $\mathbb{P}^1_{\mathsf{an},v}$. Then the sequence $\{\nu_n\}_{n\geq 1}$ converges weakly to $\mu_{\phi,v}$, where $\mu_{\phi,v}$ is the equilibrium measure for ϕ at v.