An Introduction to the Berkovich Projective Line

Rob Benedetto, Amherst College

Saturday, February 29, 2020

p-adic numbers: \mathbb{Q}_p and \mathbb{C}_p

Fix $p \ge 2$ prime. The *p*-adic absolute value on $\mathbb Q$ is given by

$$\left|\frac{r}{s}p^n\right|_p=p^{-n}$$
 for $r,s\in\mathbb{Z}$ not divisible by p .

Idea: numbers divisible by large powers of p are "small".

Note: for all $x, y \in \mathbb{Q}$,

- $|x|_p \ge 0$, with $|x|_p = 0 \Leftrightarrow x = 0$,
- $|xy|_p = |x|_p \cdot |y|_p,$
- $|x+y|_p \le \max\{|x|_p,|y|_p\}.$

"ultrametric" or "non-archimedean" triangle inequality

$$\mathbb{Q}_{p} := \left\{ \sum_{n \geq n} a_{n} p^{n} : n_{0} \in \mathbb{Z}, a_{n} \in \{0, 1, \dots, p-1\} \right\}$$

is the completion of $\mathbb Q$ w.r.t. $|\cdot|_p$.

 $\mathbb{C}_p :=$ the completion of an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p .

The absolute value $|\cdot|_p$ extends uniquely to \mathbb{C}_p .

Also, \mathbb{C}_p is both complete and algebraically closed.

Disks in \mathbb{C}_{ν}

Let \mathbb{C}_{ν} be an algebraically closed field that is complete w.r.t. a non-archimedean absolute value $|\cdot|_{\nu}$.

Given $a \in \mathbb{C}_{\nu}$ and r > 0,

$$D(a,r) := \{ x \in \mathbb{C}_v : |x - a|_v < r \} \quad \text{and} \quad \overline{D}(a,r) := \{ x \in \mathbb{C}_v : |x - a|_v \le r \}$$

are the associated open disk and closed disk.

- ▶ if $r \notin |\mathbb{C}_{v}^{\times}|_{v}$, then $D(a,r) = \overline{D}(a,r)$ is an **irrational disk**
- ▶ if $r \in |\mathbb{C}_{v}^{\times}|_{v}$, then $D(a, r) \subsetneq \overline{D}(a, r)$
- ightharpoonup D(a,r) is a **rational open disk**
- $ightharpoonup \overline{D}(a,r)$ is a rational closed disk
- All disks are (topologically) both open and closed
- ► Any point of a disk is a center. i.e.,
 - ▶ If $b \in D(a,r)$, then D(a,r) = D(b,r)
 - ▶ If $b \in \overline{D}(a,r)$, then $\overline{D}(a,r) = \overline{D}(b,r)$

Residue classes

Let
$$\mathcal{O}_{\mathbf{v}}:=\{x\in\mathbb{C}_{\mathbf{v}}\,:\,|x|_{\mathbf{v}}\leq1\}=\overline{D}(0,1)$$
 and $\mathcal{M}_{\mathbf{v}}:=\{x\in\mathbb{C}_{\mathbf{v}}\,:\,|x|_{\mathbf{v}}<1\}=D(0,1).$

Then \mathcal{O}_{v} is a ring with unique maximal ideal \mathcal{M}_{v} .

The quotient field $k:=\mathcal{O}_{\nu}/\mathcal{M}_{\nu}$ is an algebraically closed field.

[For
$$\mathbb{C}_{\it v}=\mathbb{C}_{\it p}$$
, we have $\it k\cong\overline{\mathbb{F}}_{\it p}$.]

k is called the **residue field** of \mathbb{C}_{v} , and the elements of k are called **residue classes**.

Decomposing \mathcal{O}_{ν} into cosets modulo \mathcal{M}_{ν} , we see that $\overline{D}(0,1)$ is an infinite disjoint union

$$\overline{D}(0,1) = \coprod_{\overline{c} \in k} D(c,1)$$

of one open disk for each residue class $\overline{c} \in k$.

Similarly, each rational closed disk $\overline{D}(a,r)$ is a disjoint union of infinitely many rational open disks D(a,r), but an irrational disk $\overline{D}(a,r)$ is simply $\overline{D}(a,r) = D(a,r)$.

P-Disks and Connected Affinoids

Recall
$$\mathbb{P}^1(\mathbb{C}_v) := \mathbb{C}_v \cup \{\infty\}.$$

Definition

- ▶ A \mathbb{P} -disk is either D or $\mathbb{P}^1(\mathbb{C}_v) \setminus D$, where D is a disk.
- ▶ A **connected affinoid** is a nonempty intersection of finitely many ℙ-disks.

Equivalently, a connected affinoid is \mathbb{P}^1 with finitely many \mathbb{P} -disks removed.

Theorem

Let $g(z) \in \mathbb{C}_{\nu}(z)$ be a rational function of degree $d \geq 1$, and let $D, U \subseteq \mathbb{P}^1(\mathbb{C}_{\nu})$ be a \mathbb{P} -disk and a connected affinoid. Then

- ightharpoonup g(D) is either $\mathbb{P}^1(\mathbb{C}_v)$ or a \mathbb{P} -disk.
- ▶ g(U) is either $\mathbb{P}^1(\mathbb{C}_v)$ or a connected affinoid.
- ▶ $g^{-1}(D)$ (respectively $g^{-1}(U)$) is a union of connected affinoids V_1, \ldots, V_{ℓ} , each mapping onto D (respectively, U).

From
$$\mathbb{P}^1(\mathbb{C}_{\nu})$$
 to $\mathbb{P}^1_{\mathsf{an}}$

- $ightharpoonup \mathbb{P}^1(\mathbb{C}_{\nu})$ is not compact, or even locally compact.
- $ightharpoonup \mathbb{P}^1(\mathbb{C}_v)$ is totally disconnected.

There is a nicer space \mathbb{P}^1_{an} that:

- ightharpoonup contains $\mathbb{P}^1(\mathbb{C}_{\nu})$ as a subspace,
- ▶ is compact,
- is (still) Hausdorff, and
- is path-connected.

Multiplicative Seminorms on $\mathbb{C}_{\nu}[z]$

Definition

A multiplicative seminorm on $\mathbb{C}_{\nu}[z]$ is a function

$$\zeta = \|\cdot\|_{\zeta}: \mathbb{C}_{\nu}[z] o [0,\infty)$$
 such that

- $ightharpoonup \|c\|_{\zeta} = |c|_{v}$ for all constants $c \in \mathbb{C}_{v}$,
- lacksquare $\|fg\|_{\zeta}=\|f\|_{\zeta}\cdot\|g\|_{\zeta}$ for all $f,g\in\mathbb{C}_{
 u}[z]$, and
- $||f+g||_{\zeta} \leq ||f||_{\zeta} + ||g||_{\zeta} \text{ for all } f,g \in \mathbb{C}_{\nu}[z].$

Note: We do **not** require that $||f||_{\zeta} = 0$ implies f = 0.

By the way: we get $||f + g||_{\zeta} \le \max\{||f||_{\zeta}, ||g||_{\zeta}\}$ for free.

Examples of Multiplicative Seminorms on $\mathbb{C}_{\nu}[z]$

- 1. For any $x \in \mathbb{C}_v$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|_v$.
- 2. For any disk $D\subseteq \mathbb{C}_{v}$, define $\|\cdot\|_{D}$ by

$$||f||_D := \sup\{|f(x)|_v : x \in D\}.$$

Notes on $\|\cdot\|_D$:

- If $D=\overline{D}(a,r)$ or D=D(a,r), and $f(z)=\sum c_n(z-a)^n$, then $\|f\|_D=\max\{|c_n|_vr^n:n\geq 0\}.$
- ▶ Since $\|\cdot\|_{\overline{D}(a,r)} = \|\cdot\|_{D(a,r)}$, we can denote both by $\|\cdot\|_{\zeta(a,r)}$.

The Berkovich Line

Definition

The **Berkovich affine line** \mathbb{A}^1_{an} is the set of all multiplicative seminorms on $\mathbb{C}_v[z]$.

The Berkovich projective line \mathbb{P}^1_{an} is $\mathbb{A}^1_{an} \cup \{\infty\}$.

As topological spaces, we equip \mathbb{A}^1_{an} and \mathbb{P}^1_{an} with the **Gel'fand topology**.

This is the weakest topology such that for every $f \in \mathbb{C}_{\nu}[z]$, the map $\mathbb{A}^1_{\mathrm{an}} \to \mathbb{R}$ given by

$$\zeta \mapsto \|f\|_{\zeta}$$

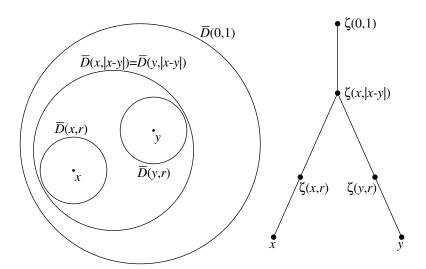
is continuous.

Berkovich's Classification of Points

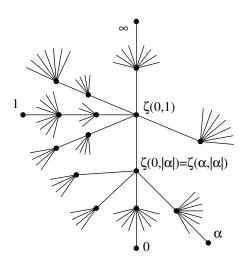
There are four kinds of points in \mathbb{P}^1_{an} .

- 1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x \in \mathbb{C}_v$, as well as the point at ∞ .
- 2. Type II: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **rational** closed disks $\overline{D}(a,r)\subseteq\mathbb{C}_{v}$.
- 3. Type III: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **irrational** disks $\overline{D}(a,r)\subseteq\mathbb{C}_{v}$.
- 4. Type IV: norms $\|\cdot\|_{\zeta}$ corresponding to (equivalence classes of) decreasing chains $D_1\supseteq D_2\supseteq \cdots$ of disks with **empty** intersection.

Path-connectedness, intuitively



The Berkovich Projective Line $\mathbb{P}^1_{\mathsf{an}}$



Berkovich Disks

Let $a \in \mathbb{C}_v$ and r > 0.

▶ The closed Berkovich disk $\overline{D}_{an}(a, r)$ is

$$\overline{D}_{\mathsf{an}}(\mathsf{a},\mathsf{r}) := \{\zeta \in \mathbb{A}^1_{\mathsf{an}} \,:\, \|\mathsf{z} - \mathsf{a}\|_\zeta \le \mathsf{r}\},$$

which is the set of all $\zeta \in \mathbb{P}^1_{an}$ corresponding to a point/disk/chain of disks contained in $\overline{D}(a,r)$.

▶ The **open Berkovich disk** $D_{an}(a, r)$ is

$$D_{\mathsf{an}}(a,r) := \{ \zeta \in \mathbb{A}^1_{\mathsf{an}} \, : \, \|z - a\|_{\zeta} < r \},$$

which is the set of all $\zeta \in \mathbb{P}^1_{an}$ corresponding to a point/disk/chain of disks contained in D(a,r), **except** $\zeta(a,r)$ itself.

Berkovich Disks and Connected Affinoids

Recall:

$$\overline{D}_{\mathsf{an}}(\mathsf{a},\mathsf{r}) := \{\zeta \in \mathbb{A}^1_{\mathsf{an}} \,:\, \|\mathsf{z} - \mathsf{a}\|_\zeta \le \mathsf{r}\}$$

and

$$D_{\mathsf{an}}(a,r) := \{ \zeta \in \mathbb{A}^1_{\mathsf{an}} \, : \, \|z - a\|_{\zeta} < r \}$$

- A Berkovich ℙ-disk is either a Berkovich disk or the complement in ℙ¹_{an} of a Berkovich disk.
- ▶ A **Berkovich connected affinoid** is a nonempty intersection of finitely many Berkovich P-disks.

Facts:

- $ightharpoonup D_{an}(a,r)$ is open but not closed.
- $ightharpoonup \overline{D}_{an}(a,r)$ is closed but not open.
- ► The open Berkovich connected affinoids form a basis for the Gel'fand topology.

Rational Functions Acting on \mathbb{P}^1_{an}

Let $\phi(z) \in \mathbb{C}_{\nu}(z)$. Then for each point $\zeta \in \mathbb{P}^1_{\mathrm{an}}$, there is a unique point $\phi(\zeta) \in \mathbb{P}^1_{\mathrm{an}}$ such that

$$\|h\|_{\phi(\zeta)} = \|h \circ \phi\|_{\zeta}$$
 for all $h \in \mathbb{C}_{\nu}(z)$.

- If ζ is type I, then $\phi(\zeta)$ is what you think.
- ▶ If ζ is a point of type II or III, corresponding to a disk $D \subseteq \mathbb{C}_{v}$, and if ϕ has no poles in D, then $\phi(\zeta)$ is the type II or III point corresponding to the disk $\phi(D)$.

Dynamics on \mathbb{P}^1_{an} : Periodic Points

Let $\phi(z) \in \mathbb{C}_{\nu}(z)$ be a rational function of degree $d \geq 2$.

Note: $deg(F/G) := max\{deg F, deg G\}$.

For
$$n \ge 1$$
, write $\phi^n := \underbrace{\phi \circ \cdots \circ \phi}_{n}$.

(And ϕ^0 =identity map on \mathbb{P}^1_{an} .)

Consider a point $\zeta \in \mathbb{P}^1_{an}$.

- ▶ If $\phi(\zeta) = \zeta$, we say that ζ is a **fixed** point of ϕ .
- ▶ If $\phi^n(\zeta) = \zeta$ for some $n \ge 1$, we say ζ is a **periodic** point of ϕ , of period n.

The smallest such $n \ge 1$ is the **minimal period** of ζ .

If $\phi^n(\zeta) = \phi^m(\zeta)$ for some $n > m \ge 0$, we say ζ is a **preperiodic** point of ϕ .

Dynamics on \mathbb{P}^1_{an} : Multipliers of Periodic Points

Let $\phi(z) \in \mathbb{C}_{\nu}(z)$ of degree $d \geq 2$, and let $\zeta \in \mathbb{P}^1_{\mathsf{an}}$ be a periodic point of ϕ of minimal period n.

- ▶ If $\zeta \in \mathbb{P}^1(\mathbb{C}_v)$ is of type I, then $\lambda := (\phi^n)'(\zeta)$ is the **multiplier** of ζ .
- ▶ If ζ is of type II, III, or IV, then ϕ^n maps ζ to itself with some **local degree** (or **multiplicity**) $\ell \in \{1, 2, ..., d^n\}$. then $\lambda := \ell$ is the **multiplier** of ζ .

Note:

- The multiplier is the the same for all points in the periodic cycle $\{\zeta, \phi(\zeta), \dots, \phi^{n-1}(\zeta)\}$ of ζ .
- The multiplier is coordinate-independent.
- ▶ If ζ is a periodic point of type III or IV, then its multiplier is necessarily $\lambda=1$.

Classifying periodic points

Let $\phi(z) \in \mathbb{C}_{\nu}(z)$ of degree $d \geq 2$, and let $\zeta \in \mathbb{P}^1_{\mathsf{an}}$ be a periodic point of ϕ with multiplier λ .

If $\zeta\in\mathbb{P}^1(\mathbb{C}_{
u})$ is of type I (so $\lambda\in\mathbb{C}_{
u}$), we say ζ is

- ▶ attracting if $|\lambda|_{\nu} < 1$.
- repelling if $|\lambda|_{\nu} > 1$.
- ▶ indifferent (or neutral) if $|\lambda|_{\nu} = 1$.

If ζ is of type II, III, or IV, (so λ is a positive integer), we say ζ is

- repelling if $\lambda \geq 2$.
- ▶ indifferent (or neutral) if $\lambda = 1$.

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}^1_{an}$ is **dynamically stable** under $\phi \in \mathbb{C}_{\nu}(z)$ if $\bigcup_{n>0} \phi^n(U)$ omits infinitely many points of \mathbb{P}^1_{an} .

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\phi} = \mathcal{F}_{\phi,\mathsf{an}}$ given by

 $\mathcal{F}_{\phi} := \{ x \in \mathbb{P}^1_{an} : x \text{ has a dynamically stable neighborhood} \}.$

The (Berkovich) Julia set of ϕ is the set

$$\mathcal{J}_{\phi} = \mathcal{J}_{\phi,\mathsf{an}} := \mathbb{P}^1_\mathsf{an} \smallsetminus \mathcal{F}_{\phi,\mathsf{an}}.$$

Basic Properties of Berkovich Fatou and Julia Sets

- \triangleright $\mathcal{F}_{\phi,an}$ is open, and $\mathcal{J}_{\phi,an}$ is closed.
- lacksquare $\mathcal{F}_{\phi^n,\mathsf{an}}=\mathcal{F}_{\phi,\mathsf{an}}$, and $\mathcal{J}_{\phi^n,\mathsf{an}}=\mathcal{J}_{\phi,\mathsf{an}}$
- $\phi(\mathcal{F}_{\phi}) = \mathcal{F}_{\phi} = \phi^{-1}(\mathcal{F}_{\phi}), \text{ and } \phi(\mathcal{J}_{\phi}) = \mathcal{J}_{\phi} = \phi^{-1}(\mathcal{J}_{\phi}).$
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.
- All indifferent periodic points of type I, III, and IV are Fatou.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field (e.g., for $\mathbb{C}_{\nu} = \mathbb{C}_{p}$), but otherwise, they can be either Julia or Fatou.

Good Reduction

Recall $\mathcal{O}_{\nu}:=\{x\in\mathbb{C}_{\nu}:|x|_{\nu}\leq1\}$ is the ring of integers of \mathbb{C}_{ν} , with unique maximal ideal $\mathcal{M}_{\nu}:=\{x\in\mathbb{C}_{\nu}:|x|_{\nu}<1\}$ and residue field $k=\mathcal{O}_{\nu}/\mathcal{M}_{\nu}$.

Given $\phi \in \mathbb{C}_v(z)$, we may write $\phi(z) = \frac{f(z)}{g(z)}$ with $f,g \in \mathcal{O}_v[z]$ relatively prime, and with at least one coefficient c of f or g having $|c|_v = 1$.

Define $\overline{\phi}:=\overline{f}/\overline{g}$, where $\overline{f},\overline{g}\in k[z]$ are the reductions of f and g.

Note that $deg(\overline{\phi}) \leq deg(\phi)$.

If $deg(\overline{\phi}) = deg(\phi)$, we say ϕ has **(explicit) good reduction**.

Theorem

Let $\phi \in \mathbb{C}_{\nu}(z)$ with $\deg(\phi) \geq 2$. The following are equivalent:

- 1. ϕ has explicit good reduction.
- 2. $\mathcal{J}_{\phi,an} = \{\zeta(0,1)\}.$

