Misiurewicz polynomials and dynamical units

*Rob Benedetto, Amherst College Vefa Goksel, University of Massachusetts

Oklahoma State Number Theory Seminar Thursday, March 24, 2022

Notation

- K is a characteristic zero field, usually a number field
- $ightharpoonup \overline{K}$ is the algebraic closure of K
- ▶ $f(z) \in K[z]$ is a polynomial of degree $d \ge 2$
- $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n}$ is the *n*-th iterate of f

Definition

We say $x \in \mathbb{P}^1(\overline{K})$ is

- ▶ periodic if $f^n(x) = x$ for some $n \ge 1$,
- preperiodic if $f^n(x) = f^m(x)$ for some $n > m \ge 0$,
- strictly preperiodic if x is preperiodic but not periodic.

Postcritically Finite Maps

Definition

We say $f \in K[z]$ is *postcritically finite*, or *PCF*, if every critical point $c \in \mathbb{P}^1(\overline{K})$ of f is preperiodic under f.

Example. $f(z) = z^2 - 3$ is *not* PCF, since the critical point x = 0 is not preperiodic.

$$x = 0 \mapsto -3 \mapsto 6 \mapsto 33 \mapsto 1086 \mapsto \cdots$$

Examples of Postcritically Finite Maps

Example.
$$f(z) = z^d$$
: $\infty \mapsto \infty$ $0 \mapsto 0$

Example.
$$f(z) = z^2 - 1$$
: $\infty \mapsto \infty$ $0 \mapsto -1 \mapsto 0$

Example.
$$f(z) = z^2 - 2$$
: $\infty \mapsto \infty$ $0 \mapsto -2 \mapsto 2 \mapsto 2$

Example.
$$f(z) = z^2 + i$$
:
 $\infty \mapsto \infty$ $0 \mapsto i \mapsto i - 1 \mapsto -i \mapsto i - 1$

Example.
$$f(z) = -2z^3 + 3z^2$$
: $\infty \mapsto \infty$ $0 \mapsto 0$ $1 \mapsto 1$

Why should we care about PCF maps?

One of many reasons:

Let K be a global field and $x_0 \in K$. Define

- $ightharpoonup K_n := K(f^{-n}(x_0)),$
- $ightharpoonup K_{\infty} := \bigcup_{n>1} K_n,$

If f is PCF, then:

- The tower $\cdots K_3/K_2/K_1/K$ is ramified over only finitely many primes. (Aitken, Hajir, Maire 2005).
- ▶ G_{∞} has infinite index in the otherwise expected automorphism group Aut $(T_{d,\infty})$ of an infinite rooted d-ary tree.

Idea:

Elliptic Curve		Dynamical System
torsion point	\longleftrightarrow	preperiodic point
CM curve	\longleftrightarrow	PCF map

The Quadratic Polynomial Family

Define $f_c(z) = z^2 + c$. Critical points are ∞ (fixed) and 0.

$$0 \mapsto c \mapsto c^2 + c \mapsto (c^2 + c)^2 + c \mapsto \cdots$$

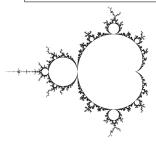
We say c is a **PCF parameter** if $f_c^n(0) = f_c^m(0)$ for some $n > m \ge 0$.

$$\begin{array}{c} \boxed{m=0,\ n=1} \colon \boxed{c=0} \qquad 0 \mapsto 0 \\ \\ \boxed{m=0,\ n=2} \colon c^2+c=0,\ \text{so}\ (c=0),\ \boxed{c=-1} \qquad 0 \mapsto -1 \mapsto 0 \\ \\ \boxed{m=2,\ n=3} \colon (c^2+c)^2+c=c^2+c,\ \text{so} \\ \hline c^4+2c^3=0,\ \text{so}\ (c=0),\ \boxed{c=-2} \qquad 0 \mapsto -2 \mapsto 2 \mapsto 2 \\ \\ \boxed{m=2,\ n=4} \colon ((c^2+c)^2+c)^2+c=c^2+c,\ \text{so} \\ \hline c^3(c+1)^2(c+2)(c^2+1)=0,\ \text{so}\ (c=0,-1,-2),\ \boxed{c=\pm i} \\ 0 \mapsto i \mapsto i-1 \mapsto -i \mapsto i-1 \\ \end{array}$$

PCF parameters and the Mandelbrot set

Let $K = \mathbb{C}$ and let $f_c(z) = z^2 + c$.

The **Mandelbrot set** is $\mathcal{M} = \{c \in \mathbb{C} | \{f_c^n(0)\}_{n \geq 0} \text{ is bounded} \}$



Facts:

- The PCF parameters c for which 0 is periodic lie in the interior of \mathcal{M} .
- ullet The other (strictly preperiodic) PCF parameters c are dense in $\partial \mathcal{M}$.

The Unicritical Polynomial Family

Fix $d \ge 2$. Define $f_{d,c}(z) = z^d + c$. Critical points are ∞ (fixed) and 0.

$$0 \mapsto c \mapsto c^d + c \mapsto (c^d + c)^d + c \mapsto \cdots$$

We say $c \in \overline{K}$ is a **PCF parameter** if $f_{d,c}^{m+n}(0) = f_{d,c}^{m}(0)$ for some $m \ge 0$ and $n \ge 1$. In that case,

- ightharpoonup c is a Gleason parameter if 0 is periodic under $f_{d,c}$, or
- c is a Misiurewicz parameter if 0 is strictly preperiodic under f_{d,c}.

Note:
$$f_{d,c}^{m+n}(0) - f_{d,c}^{m}(0) = \prod_{\zeta^{d}=1} \left(f_{d,c}^{m+n-1}(0) - \zeta f_{d,c}^{m-1}(0) \right)$$

$$0 \mapsto a_1 \mapsto a_2 \dots \mapsto a_{m-1} \mapsto \boxed{a_m} \mapsto \dots \mapsto a_{m+n-1} \mapsto \boxed{a_{m+n}}$$

$$a_{m+n} = a_m \implies a_{m+n-1} = \zeta a_{m-1}$$

Gleason and Misiurewicz Polynomials

For the family $f_{d,c}(z) = z^d + c$, with $a_k = f_{d,c}^k(0)$. (Note: deg $a_k = d^{k-1}$)

The n-th Gleason polynomial is

$$G_{d,0,n}(c):=\prod_{k|n}\left(a_k(c)\right)^{\mu(n/k)}.$$

Fix a *d*-th root of unity $\zeta \neq 1$. The (m, n)-Misiurewicz polynomial is

$$G_{d,m,n}^{\zeta} := \prod_{k|n} \left(a_{m+k-1} - \zeta a_{m-1} \right)^{\mu(n/k)} \cdot \begin{cases} (G_{d,0,n})^{-1} & \text{if } n|m-1, \\ 1 & \text{if } n\nmid m-1. \end{cases}$$

Simple Roots

$$\begin{split} f_{d,c}(z) &= z^d + c, & a_k = f_{d,c}^k(0) \\ G_{d,0,n}(c) &:= \prod_{k|n} \left(a_k(c) \right)^{\mu(n/k)} \\ G_{d,m,n}^\zeta &:= \prod_{k|n} \left(a_{m+k-1} - \zeta a_{m-1} \right)^{\mu(n/k)} \cdot \begin{cases} (G_{d,0,n})^{-1} & \text{if } n|m-1, \\ 1 & \text{if } n\nmid m-1. \end{cases} \end{split}$$

Theorem

Let $d \geq 2$, $m \geq 2$, and $n \geq 1$. Let $\zeta \neq 1$ be a d-th root of unity. Then

- ▶ $G_{d,0,n}$ is a monic polynomial in $\mathbb{Z}[c]$ with only simple roots.
- $ightharpoonup G_{d,m,n}^{\zeta}$ is a monic polynomial in $\mathbb{Z}[\zeta][c]$ with only simple roots.

Irreducibility?

$$\begin{split} f_{d,c}(z) &= z^d + c, & a_k = f_{d,c}^k(0) \\ G_{d,0,n}(c) &:= \prod_{k|n} \left(a_k(c) \right)^{\mu(n/k)} \\ G_{d,m,n}^{\zeta} &:= \prod_{k|n} \left(a_{m+k-1} - \zeta a_{m-1} \right)^{\mu(n/k)} \cdot \begin{cases} (G_{d,0,n})^{-1} & \text{if } n|m-1, \\ 1 & \text{if } n \nmid m-1. \end{cases} \end{split}$$

Question/Conjecture: For every $d \ge 2$, $m \ge 2$, and $n \ge 1$,

- ▶ Is $G_{d,0,n}$ irreducible over \mathbb{Q} ?
- ▶ Is $G_{d,m,n}^{\zeta}$ irreducible over $\mathbb{Q}(\zeta)$?

Fact: (Buff 2017): If $d \equiv 1 \pmod{6}$, then $G_{d,0,3}$ is divisible by $c^{2(d-1)} + c^{d-1} + 1$

But in all other cases, computations suggest not only irreducibility, but that the Galois group of the polynomial is S_N .

Iterates of Misiurewicz parameters

$$f_{d,c}(z) = z^d + c,$$
 $a_k = f_{d,c}^k(0)$

Fix $d \geq 2$, $m \geq 2$, $n \geq 1$, and $\zeta \neq 1$ with $\zeta^d = 1$.

Roots of $G_{d,m,n}^{\zeta}$ satisfy $a_{n+m-1} = \zeta a_{m-1}$

Theorem

Let c_0 be a root of $G_{d,m,n}$, let $K = K(c_0)$, and let $v \in M_K$.

- If v(d) = 0, then $v(a_i(c_0)) = 0$ for all $i \ge 1$
- ▶ If $d = p^e$ and v(d) > 0, then $v(a_i(c_0)) = 0$ for $n \nmid i$ but $v(a_i(c_0)) > 0$ for $n \mid i$.

 (And there's an exact formula, $v(a_i(c_0)) \approx d^{-m}v(p)$.)

Proof considers $v(a_i - a_j)$ and $v(\zeta - 1)$ in:

$$\cdots \mapsto a_{m-1} \mapsto \boxed{a_m} \mapsto \cdots \mapsto a_{m+n-1} = \zeta a_{m-1} \mapsto \boxed{a_m}$$

Evaluating a special polynomial at special parameter

Example: Let Φ_m be the *m*-th cyclotomic polynomial, and let ζ_n be a primitive *n*-th root of unity, with $m > n \ge 1$. Then $\Phi_m(\zeta_n)$ is *not* a unit $\Leftrightarrow m = p^k n$ (some prime power p^k)

Essentially: when is $\zeta_m - \zeta_n$ an algebraic unit?

Example (Morton, Silverman, 1995): Let $f \in \mathbb{Z}[z]$ be a monic polynomial of degree $d \geq 2$. Let $a, b \in \overline{\mathbb{Q}}$ be periodic points of exact periods $m, n \geq 1$ (respectively), with $m \nmid n$ and $n \nmid m$. Then a - b is an algebraic unit.

I.e., plugging a into the polynomial $\prod_{d|n} (f^d(z) - z)^{\mu(n/d)}$ defining

b gives an algebraic unit.

So what about $G_{d,j,\ell}^{\zeta}(c_0)$ if c_0 is a root of a *different* Misiurewicz polynomial?

When is $G_{d,i,\ell}^{\zeta}(c_0)$ a unit?

$$f_{d,c}(z)=z^d+c$$

Let $d, m \ge 2$, $n \ge 1$, and $\zeta \ne 1$ a d-th root of unity.

Let c_0 be a root of $G_{d,m,n}^{\zeta}$.

So
$$f_{d,c_0}^{m+n}(0) = f_{d,c_0}^m(0)$$

Question: For which integers $j \geq 2$ and $\ell \geq 1$ is $G_{d,j,\ell}^{\zeta}(c_0)$ an algebraic unit?

Theorem (B., Goksel)

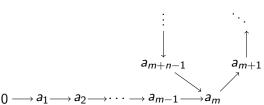
With notation as above, if $j \neq m$, then

$$G_{d,j,\ell}(c_0)$$
 is a unit $\iff \ell \neq n$.

And when $\ell = n$, we have a precise description of $\langle G_{d,i,\ell}(c_0) \rangle$.

Proof ideas for $G_{d,j,\ell}^{\zeta}(c_0)$ with $j \neq m$

Actual:



Modulo v, if $v(G_{d,i,\ell}^{\zeta}(c_0)) > 0$:

When is $G_{d,j,\ell}^{\zeta}(c_0)$ a unit if j=m?

$$f_{d,c}(z)=z^d+c$$

Let $d, m \geq 2$, $n \geq 1$, and $\zeta \neq 1$ a d-th root of unity.

Let c_0 be a root of $G_{d,m,n}^{\zeta}$.

So
$$f_{d,c_0}^{m+n}(0) = f_{d,c_0}^m(0)$$

Theorem (B., Goksel)

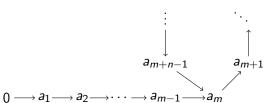
With notation as above, if $1 \le \ell \le n$ and $\ell \nmid n$, then $G_{d,m,\ell}^{\zeta}(c_0)$ is an algebraic unit.

Conjecture

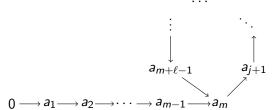
With notation as above, if $1 \le \ell \le n$ and $\ell | n$, then $G_{d,m,\ell}^{\zeta}(c_0)$ is **not** an algebraic unit.

Proof ideas for $G_{d,m,\ell}^{\zeta}(c_0)$, i.e., j=m

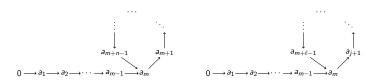
Actual:



Modulo v:



The hard case: j = m and $\ell | n$



Let c_0 be a root of $G_{d,m,n'}^{\zeta}$ and let $lpha_0$ be a root of $G_{d,m,\ell}^{\zeta}$

Goal: \exists finite place v s.t. $v(G_{d,m,\ell}^{\zeta}(c_0)) > 0$

Assume: $G_{d,m,n}^{\zeta}$ irreducible over $\mathbb{Q}(\zeta)$. Then:

(Goal)
$$\iff \exists$$
 finite place v s.t. $v(G_{d,m,n}^{\zeta}(\alpha_0)) > 0$

the multiplier $\lambda(\alpha_0)$ of the periodic cycle in the critical orbit of f_{d,α_0} is v-adically close to $\zeta_{n/\ell}$

$$\iff v(\Phi_{n/\ell}(\lambda(\alpha_0)) > 0$$

The multiplier polynomial

Definition

Let $d,m\geq 2$ and $n\geq 1$ be integers, and let $\zeta\neq 1$ be a d-th root of unity. The multiplier polynomial associated with $G_{d,m,n}^{\zeta}$ is

$$P_{d,m,n}^{\zeta}(x) = \prod_{j} (x - \lambda(c_j)) \in \mathbb{Z}[\zeta][x],$$

where $\lambda(c_j) = \prod_{i=m}^{m+n-1} d(a_i(c_j))^{d-1}$ is the multiplier of the periodic cycle of f_{d,c_j} .

Conjecture

For d, m, n, ζ as above, and for every $i \geq 1$, the resultant $\operatorname{Res}(P_{d,m,n}^{\zeta}, \Phi_i)$ is **not** a unit in $\mathbb{Z}[\zeta]$.

The case d=2: the quadratic family $f_c(z)=z^2+c$

$$\zeta^2=1$$
 with $\zeta
eq 1$ means $\zeta=-1$, so write $G_{m,n}$ instead of $G_{d,m,n}^{\zeta}$

Prior results (Goksel et al.):

 $G_{m,n}$ is irreducible for all $m \ge 1$ and $1 \le n \le 3$.

Theorem (B., Goksel)

If
$$f = x^k + A_{k-1}x^{k-1} + \cdots + A_0 \in \mathbb{Z}[x]$$
 is 2-special, i.e.,

- $ightharpoonup v_2(A_{k-1}) > v_2(2)$, and
- $v_2(A_j) > v_2(A_{k-1}) \text{ for } j = 0, 1, \dots, k-2,$

then for all $\ell \geq 1$, we have $|\operatorname{Res}(f, \Phi_{\ell})| > 1$.

Theorem (B., Goksel)

For every $m \ge 2$, both $P_{m,1}$ and $P_{m,2}$ are 2-special.

Combining various implications

Corollary

Let d=2, and let $m\geq 2$. For n=1,2,3: For any root c_0 of $G_{m,n}$, and any integer $1\leq \ell \leq n$,

$$G_{m,\ell}(c_0)$$
 is a unit $\iff \ell \nmid n$