Computing arboreal Galois groups of some cubic polynomials

Robert L. Benedetto

Amherst College

Mathematical Congress of the Americas, Montreal Special Session on Arithmetic Dynamics Wednesday, July 26, 2017

Notation

- K is a field, usually a number field
- $ightharpoonup \overline{K}$ is the algebraic closure of K
- $\phi \in K(z)$ is a rational function of degree $d \ge 2$

Goal: Given $x_0 \in \mathbb{P}^1(K)$, to understand the action of Galois on the backward orbit

$$\{x_0\} \cup \phi^{-1}(x_0) \cup \phi^{-2}(x_0) \cup \cdots$$

A Tower of Extension Fields

Fix $\phi \in K(z)$ of degree $d \geq 2$, and fix $x_0 \in \mathbb{P}^1(K)$. For each $n \geq 0$, let $K_n = K(\phi^{-n}(x_0))$ and $G_n = \operatorname{Gal}(K_n/K)$.

T_n and Aut (T_n)

Let T_n be a rooted d-ary tree with n levels, and let $Aut(T_n)$ be its automorphism group.

 $\operatorname{Aut}(T_1) \cong S_d$, $\operatorname{Aut}(T_2) \cong S_d \wr S_d$, and $\operatorname{Aut}(T_n) \cong [S_d]^{\wr n}$. Note: $|\operatorname{Aut}(T_n)| = (d!)^{1+d+d^2+\cdots+d^{n-1}}$

How big is G_n in $Aut(T_n)$?

Because each $\sigma \in G_n$ is completely determined by its action on the roots of $\phi^n(z) - x_0$,

 G_n is isomorphic to a subgroup of Aut (T_n) .

Question: How big a subgoup of $Aut(T_n)$?

Expected answer: It should be (essentially) all of $Aut(T_n)$, unless there is an obvious reason why it can't be.

More precisely, our expectation is that the index $[Aut(T_n) : G_n]$ is bounded as $n \to \infty$.

That is, $G_{\infty} = \varprojlim G_n$ has finite index in $\operatorname{Aut}(T_{\infty}) = \varprojlim \operatorname{Aut}(T_n)$.

When is $[Aut(T_{\infty}): G_{\infty}]$ "obviously" infinite?

- ▶ If the root point *x*₀ is periodic.
- ▶ If there is a critical point in the backward orbit of x_0 .
- ▶ If $\phi = \psi^n$ for some $\psi \in K(z)$ and $n \ge 2$.
- If ϕ is an endomorphism of an algebraic group (or a quotient). **Examples**:
 - $\phi(z) = z^d$ is an endomorphism of the multiplicative group \overline{K}^{\times} .
 - ϕ is Chebyshev, e.g. $\phi(z) = z^2 2$. (Semi-conjugate to z^d .)
 - $ightharpoonup \phi$ is Lattès. (Semi-conjugate to elliptic curve endomorphism.)

When is $[Aut(T_{\infty}): G_{\infty}]$ "obviously" infinite? (Cont'd)

▶ If $\phi(h(z)) = \phi(z)$ for some nontrivial $h \in PGL(2, \overline{K})$, and if deg $\phi \ge 3$.

Example: $\phi(z) = z^d + c$ with $d \ge 3$, and $h(z) = \zeta_d z$.

After the first level we have $\zeta_d \in K_1$.

At each successive branch, we pick up only C_d , not S_d .

Thus, $G_n \subseteq [C_d]^{ln}$. (Well, slightly more complicated at first level if $\zeta_d \notin K_{0}$.)

- ► Certain funny coincidences occur in critical points' orbits: e.g. ϕ has only two critical points c_1 and c_2 , and $\phi^n(c_1) = \phi^n(c_2)$ for some $n \ge 2$. [Observed by Richard Pink.]
- $ightharpoonup \phi$ is postcritically finite.

PCF maps

Definition

 $\phi(z)$ is **postcritically finite**, or **PCF**, if every critical point of ϕ has finite forward orbit.

Why does PCF imply infinite index?

Let N be the length of the longest critical orbit. Then each discriminant $\Delta_n = \operatorname{Disc}(\phi^n(z) - x_0)$ turns out to be a product of finitely many factors (mostly powers of $\Delta_1, \ldots, \Delta_N$).

Thus, once we get to some level M of the tower, K_M already contains $\sqrt{\Delta_n}$ for every $n \ge M$.

So $Gal(K_n/K_M)$ acts only by even permutations for $n \ge M$.

Some past results

- ▶ Odoni (1985) proves $G_{\infty} = \operatorname{Aut}(T_{\infty})$ for a generic polynomial of degree d. Also proves $G_{\infty} = \operatorname{Aut}(T_{\infty})$ for a specific degree 2 polynomial over \mathbb{Q} .
- Stoll (1992) extends Odoni's method to infinitely many degree 2 polynomials over ℚ.
- ▶ Jones (early 2000s) proves various finite index results assuming each $\phi^n(z) x_0$ is irreducible over K.
- ▶ Pink (2013), Juul (2014), Juul-Kürlberg-Madhu-Tucker (2015) prove $G_{\infty} = \operatorname{Aut}(T_{\infty})$ results when K is a function field, under various restrictions on ϕ and x_0 .
- ▶ Bush-Hindes-Looper (2016) prove $[[C_p]^{\wr \infty}:G_\infty]<\infty$ for infinitely many $\phi(z)=z^p+c$ examples over \mathbb{Q} . (Including some with $G_\infty=[C_p]^{\wr \infty}$.)

A certain PCF cubic

For the rest of this talk: $\phi(z) = -2z^3 + 3z^2$.

Critical points are $0, 1, \infty$; all three are fixed.

Note: Newton's method for finding the roots of $g(z)=z^3-z$ requires iterating $\psi(z)=\frac{2z^3}{3z^2-1}$, which is conjugate to $\phi(z)$. (via $z\mapsto 1/(1-2z)$)

$$\phi(z) = -2z^3 + 3z^2$$

Direct computation shows: for any $x \in \overline{K}$,

$$\mathsf{Disc}(\phi^{2}(z) - x) = \left[2^{16} \cdot 3^{9} \cdot x^{2}(x - 1)^{2}\right]^{2} \in (K(x)^{\times})^{2}.$$

So for any x in the preimage tree of x_0 , the extension $K(\phi^{-2}(x))/K(x)$ has Galois group contained in $Aut(T_2) \cap A_9$.

Thus, $G_n \subseteq E_n$, where E_n is the following group:

Let
$$E_1 = S_3$$
 (\cong Aut(T_1)), and $E_2 = Aut(T_2) \cap A_9$.

For
$$n \geq 1$$
: Let $E_{n+1} = (E_n \wr S_3) \cap (A_9 \text{ at level } 2)$

That is, to pick an element of E_{n+1} , first choose elements $\sigma_1, \sigma_2, \sigma_3 \in E_n$ to act on the subtrees above y_1, y_2, y_3 :

Then choose $\tau \in S_3$ at the bottom, to permute $\{y_1, y_2, y_3\}$, while ensuring the automorphism is even at level 2.

Computing G_n for $\phi(z) = -2z^3 + 3z^2$

Theorem (RB, Faber, Hutz, Juul, Yasufuku; 2016)

Let K be a number field.

Let $\mathfrak{p}|2$ and $\mathfrak{q}|3$ be primes of K, and suppose that

- $v_{\mathfrak{q}}(x_0) = 1, \ and$
- either $v_{\mathfrak{p}}(x_0) = \pm 1$ or $v_{\mathfrak{p}}(1-x_0) = 1$.

Then the preimage tree of x_0 under $\phi(z) = -2z^3 + 3z^2$ has $G_n \cong E_n$ for all $n \ge 1$.

Example. Let $K = \mathbb{Q}$, and

$$x_0 \in \left\{3, \pm 6, \pm \frac{3}{2}, 15, -21, \pm 30, \pm \frac{15}{2}, \dots\right\}.$$

A local ramification lemma

Lemma

For all $n \ge 0$ and all $y \in \phi^{-n}(x_0)$, in the field extension K(y)/K, the prime $\mathfrak p$ ramifies to degree divisible by 2^n , and the prime $\mathfrak q$ ramifies to degree divisible by 3^n .

In particular, since $K(y) \subseteq K_n$, the Galois group G_n has order divisible by 6^n .

Sketch of Proof: For \mathfrak{q} (recall: $\mathfrak{q}|3$),

$$\phi(z) = -2z^3 + 3z^2 \equiv z^3 \pmod{\mathfrak{q}}$$

so
$$\phi^n(z) \equiv z^{3^n} \pmod{\mathfrak{q}}.$$

Since $v_q(x_0)=1$, we must have $v_q(y)=1/3^n$. The proof for $\mathfrak p$ and 2^n is similar.

"QED"

$G_2 \cong E_2$

Since $E_1 = S_3$ has order 6, the lemma gives $G_1 \cong E_1$.

But $|E_2| = 2^3 \cdot 3^4 = 648$, while the lemma only tells us that $|G_2|$ is divisible by 36.

- ▶ Still, we know $Gal(K_2/K_1)$ has order divisible by 6.
- So by Cauchy's Theorem, G₂ has elements σ, τ fixing K₁ and of orders 2 and 3.
- Some playing shows we can get all 648 elements of E_2

For $n \geq 2$, $G_n \cong E_n$ implies $G_{n+1} \cong E_{n+1}$

There are four *n*-high trees here: above x_0 , u_1 , u_2 , and u_3 .

Strategically pick elements from each copy of E_n and combine various commutators of them to produce $\lambda \in G_{n+1}$ that acts as:

- ▶ two 2-cycles on $\phi^{-2}(y)$, and
- the identity everywhere else.

Now take products of conjugates of λ to produce all of E_{n+1} .

Summary

Theorem (RB, Faber, Hutz, Juul, Yasufuku; 2016)

Let K be a number field, let $\phi(z) = -2z^3 + 3z^2$, and let $x_0 \in K$ satisfy certain simple conditions at 2 and 3.

Then the preimage tree of x_0 under ϕ has $G_n \cong E_n$ for all $n \ge 1$, where E_n is a certain subgroup of $\operatorname{Aut}(T_n)$, with

$$|E_n| = 2^{3^{n-1}} \cdot 3^{(3^n-1)/2}, \qquad |\operatorname{Aut}(T_n)| = 6^{(3^n-1)/2},$$

so index is
$$[Aut(T_n): E_n] = 2^{(3^{n-1}-1)/2}$$
.

Thank you!

