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The Complex Plane

C={x+iy:x,y eR}={re :r,0 e R}
where re® = (rcosf) 4 i(rsin#).

¥

If z=x+ iy = re’ € C, we say:
» x = Rez is the real part of z,
» y = Im z is the imaginary part of z,
» r =|z| is the modulus of z,
> 0 = arg z is the argument of z.
Note r? = x2 + y2.



Arithmetic in C

Addition:
Vector-style: z1 + zp = (x1 + x2) + i(y1 + y2)

Multiplication:
Multiply moduli (lengths); add arguments (angles):
212 = r1r2691+92.
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The Riemann Sphere

C=Cu{oo}.
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C inherits the metric from R3, so points with large absolute value
are “close to 00.”

Example: 1000, —1000, 1000/, —1000i are all very close to each
other in C, even though they are very far apart in C.



Dynamics of Rational Functions

Let ¢(z) be a polynomial (or rational function) of degree d > 2. So
$»:C—C
Write
¢'(2) = 9(2), #(2) = ¢ 0 ¢(2),
¢*(2) = popo¢(2), etc.

Example. ¢(z) = z2. Then ¢?(z) = z*, #3(z) = 28, ¢*(z) = 2*°,
and in general, ¢"(z) = z(*").

Example. ¢(z) = z2 + 1. Then
» 0?(2) = (22 +1)2+1=24 422242,
» 3(2) = (2* +222+2)2 +1 =22 +42° 4 82* + 822 + 5,
> ¢"(z) = 2?") + big mess.



Periodic Points

Definition
A fixed point of ¢ is a point zy such that ¢(z) = z.

Example. If ¢(z) = z2, then 0, 1, and oo are fixed points of ¢.

(And that's it, since any fixed point besides co must satisfy
#(z) = z, which means z2 — z = 0.)

Definition
More generally, a periodic point of ¢ of period n > 1 (a.k.a an
n-periodic point) is a point zy such that ¢"(z) = z.

The smallest positive integer n such that ¢(z)) = zp is the (exact)
period of z.



2-Periodic Points of z2

Example. If ¢(z) = 22, then w = €?™/3 is a 2-periodic point of ¢:

We see p(w) = w? = e*™/3 and ¢?(w) = w* = w.

We say {w,w?} is a 2-cycle.
Y
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To find them: Solving ¢?(z) = z gives z* = z,
ie,[z=o0cor] z(z—1)(z22+z+1)=0,

e, z=00,0,1,w,w?



Some Periodic Points of z2 — 1

Example. If ¢(z) = z% — 1, then the fixed points are co and the
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roots of z2 — z — 1 = 0, which means oo,

To find the 2-periodic points, we solve ¢?(z) = z:
(2 -12-1=2z

that is, z* — 222 — z = 0, which factors as (22 —z —1)(z2 +z) = 0.

Throw away z? — z — 1 (those were fixed points, not 2-periodic
points), and the only 2-periodic points are 0 and —1.

Sure enough, ¢(0) = —1 and ¢(—1) = 0.



Classifying Periodic Points

Consider ¢(z) = z2 near the fixed points at 0 and 1.

For z near 0 (say, |z| < 1), then ¢(z) is even closer to 0.

(Le., l¢(2)] < z].)

For z near 1 (say, |z—1| < 1/2), then ¢(z) is farther away from 1.
(Le., [6(z) — 1 > |z — 1],

What'’s going on?
More generally, if ¢p(a) = a, let A = ¢/(a). The Taylor series is:

p(z)=a+Nz—a)+a(z—a)P +a(z—a)P+---
So for z close to a (i.e., |z — a| small):

¢(z) —a=~ ANz - a).



Multipliers of Periodic Points

Definition B
Let ¢ be a rational function, and let a € C be a periodic point of
exact period n > 1. The multiplier of a is

A= (") (a)
=[#@] [¢'(¢(a)] - [¢'(¢*(@)] - [¢'(6"(a))]-
If |]A\| <1, we say a is attracting.
If |A| > 1, we say a is repelling.

If [\ =1, we say a is indifferent.



Examples

Example. For ¢(z) = 22,

0 is an attracting fixed point (since ¢'(0) = 0),
and
1 is a repelling fixed point (since ¢'(1) = 2).

(Note: oo is also attracting.)

Example. For ¢(z) = 22 — 1,

{0, —1} is an attracting 2-cycle,
because ¢/(0) = 0 and ¢/(—1) = -2,
so that (¢%)'(0) = (¢*)'(-1) =0.



Fatou and Julia Sets
Definition
Let ¢ be a rational function. The Fatou set F of ¢ is

{z € C :there is a disk D > z
s.t. if wi,ws € D, then
Vn>1, ¢"(wr) is near ¢"(w2)}

The complement is the Julia set 7 = C \ F.

Fact: All attracting periodic points are in the Fatou set, and
all repelling periodic points are in the Julia set.

Deeper Fact: The repelling periodic points are dense in the Julia
set.



Example: The Fatou and Julia Sets of z2

Example. ¢(z) = z°:

If |z| < 1, then ¢"(w) — O for every nearby w. So
{zeC:|z| <1} C F.

If |z| > 1, then ¢"(w) — oo for every nearby w. So
{zeC:|z| >1} C F.

If |z| =1, then: uh-oh.

So J is the unit circle:



The Julia Set of ¢(z) = 22 + 1



The Julia Set of ¢(z) = 22 — 1

(“The Basilica")



The Julia Set of ¢(z) = 22 + (.123 + .745i)

(Douady’s "Rabbit")



The Julia Set of ¢(z) = z? + ¢ for Various ¢

c=-.5 c=—-54+3/ | c=-1+.16/

c=—.12+4 .765/ c=1 c=—-3+4+.71i

c=—775+.177i | c = .44+ .29/ | c = —.513 — 579/




Julia Sets of Some Cubic Polynomials




More Facts about Fatou and Julia Sets

1. Points in F map to F,
and points in J map to J.

2. Any connected component of F maps onto another (or the
same) component of F.

3. All Fatou components are preperiodic.
(Sullivan, 1985; very deep theorem)

4. If a periodic Fatou component contains an attracting periodic
point, then there’s a critical point somewhere in the cycle
of components.

5. (Special case of (4) for quadratic polynomials):
Suppose ¢(z) = z% + c. Then ¢ has at most two attracting
periodic cycles: {co}, and maybe one other.
(The other has to attract the critical point at 0.)

From now on, let's only consider ¢.(z) = 2% + c.



A Period 4 Attracting Fatou Component

#(z) = 2% + ¢ for c ~ —1.31.



A Period 8 Attracting Fatou Component

#(z) = 2% + ¢ for c ~ —1.38.



The Mandelbrot Set

Note: If ¢-(z) has an attracting cycle (besides o0), then it
attracts 0, so

{¢c(0):n=>1}

is a bounded set.

But lots of other ¢ have this property, too
Example: ¢_5(z) = z> — 2 has J = [-2,2] C R, with all of F
attracted to oo, so there are no attracting cycles besides {co}.

However, ¢_»(0) = —2, which is fixed, so ¢",(0) = —2 for all
n>1.



The Mandelbrot Set

Definition
The Mandelbrot set is

M={ceC:{¢20):n>1}is bounded}.

(Benoit Mandelbrot, 1980)

Facts:

1. The Julia set J of ¢, is connected if and only if c € M.
2. Forevery ce M, |c| < 2.

3. M is connected. (Hard Theorem: Douady and Hubbard,
1984.)



The Mandelbrot Set




Where are the c¢'s with Attracting Fixed Points?

Let's compute

Hi = {c € C: ¢, has a finite attracting fixed point}.

1. The fixed points are roots of z2 — z 4+ ¢ = 0. That means

1+£v1—4c
zZ=—
2

, 1 ,
Write 1 — 4c = re?, so that ¢ = Z(l —re'?). (r>0.) So

- %(1 +\/re/?),

2. To be attracting, one must have |¢/.(z)| < 1. That is, |2z] < 1,

which is to say .
11+/re"?| < 1.

(for at least one choice of + or —.)



3. Writing e = cosf + isin6, |14 \/re’?/2| < 1 means
6 .
1> ‘(1j:ﬁcos§> + i\/rsin 5‘
Squaring, that is
0\2 0 0
1> (li\ﬁcos§> +rsin? S =142yFcos s+,

so that o
r < F2+/rcos >

for at least one of — or +.



4. But r > 0!!! So, squaring both sides of r < F24/r cos(6/2)
gives

0
r? < 4rcos? 5= 2r(1+ cosf),

or in other words, r < 2(1 + cos 0).

That means re? is inside the cardioid r = 2(1 + cos ).

1 ,
And that means ¢ = Z(l — re'?) is inside the cardioid:
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Reminder of The Mandelbrot Set

SEENRY




Where are the c¢'s with Attracting 2-cycles?

Let's compute

Ho = {c € C: ¢ has a finite attracting 2-cycle}.

1. ¢2(z) = z* +2cz? + (c® + ¢), so
$3(2)—z = 2*+2c2? —z+ (P +c) = (22— z+ ) (2P +z+(c+1)).

The first factor is the fixed points, so we throw it away. So the
2-periodic points are the two roots of

ZZ4+z+(c+1)=0.



2. We compute
(qbg)'(z) =473 4 4cz = 4zp(z).

If z is a 2-periodic point, so that z2 +z+ c+ 1 =0, we get
#(z)=2>+c=-z-1,50

(62)(2) = 42(~2 — 1) = —M(2 + 2) = 4(c + 1).



3. So we have an attracting 2-cycle if |4(c +1)| < 1.

If we write ¢ = a + bi and square, this means

1 2
(a+ 12+ b < (Z) :

which means c is inside the circle of radius 1/4 centered at —1:
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Another Reminder of The Mandelbrot Set
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Periods of Some Other Bulbs




The 3-bulb




A 4-bulb




A 6-bulb




Some Associated Julia Sets
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Moving Right out of the Cardioid: ¢.(z) = 2> + ¢
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Moving Left out of the Cardioid: ¢.(z) = z° + ¢

v *u\\) w o
c=-5 c=-—-.75 c=-1 c=-1.25
c~ —1.31 c~ —1.37 c~ —1.38 c~ —1.40




Julia Sets for Some Specific Parameters




A Closeup of M near ¢ = —1.755




The Airplane Julia Set: ¢ =~ —1.755
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Mandelbrot's Picture of the Mandelbrot Set

Annals New York Academy of Sciences

;"V . “A striking fact, which | think
‘ ‘ is new, becomes apparent here:
FIGURE 1 is made of several dis-
;' connected portions, as follows.”




Two Big Open Questions

1. Let
H = {c € C: ¢. has an attracting cycle besides co}.
Big Conjecture: 7 is dense in M.

The density of H would be implied by another
Big Conjecture: M is locally connected.

2. What is the area of the boundary OM?
[Shishikura (1994) showed M has Hausdorff dimension 2.]



