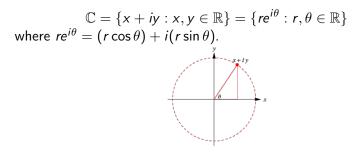
An Introduction to Complex Dynamics and the Mandelbrot Set

Robert L. Benedetto Amherst College

Mount Holyoke College REU

Wednesday, June 18, 2014

The Complex Plane



If
$$z = x + iy = re^{i\theta} \in \mathbb{C}$$
, we say:

- x = Rez is the real part of z,
- y = Im z is the **imaginary part** of z,
- r = |z| is the **modulus** of z,

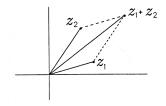
•
$$\theta = \arg z$$
 is the **argument** of z.

Note $r^2 = x^2 + y^2$.

Arithmetic in $\ensuremath{\mathbb{C}}$

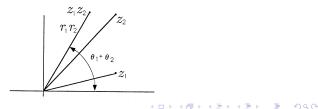
Addition:

Vector-style: $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$

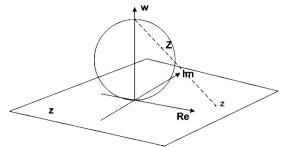


Multiplication:

Multiply moduli (lengths); add arguments (angles): $z_1z_2 = r_1r_2e^{\theta_1+\theta_2}$.



The Riemann Sphere



 $\overline{\mathbb{C}}$ inherits the metric from $\mathbb{R}^3,$ so points with large absolute value are "close to $\infty."$

Example: 1000, -1000, 1000i, -1000i are all very close to each other in $\overline{\mathbb{C}}$, even though they are very far apart in \mathbb{C} .

Dynamics of Rational Functions

Let $\phi(z)$ be a polynomial (or rational function) of degree $d \ge 2$. So $\phi: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Write

$$\begin{split} \phi^{1}(z) &= \phi(z), & \phi^{2}(z) &= \phi \circ \phi(z), \\ \phi^{3}(z) &= \phi \circ \phi \circ \phi(z), & \text{etc.} \end{split}$$

Example. $\phi(z) = z^2$. Then $\phi^2(z) = z^4$, $\phi^3(z) = z^8$, $\phi^4(z) = z^{16}$, and in general, $\phi^n(z) = z^{(2^n)}$.

Example. $\phi(z) = z^2 + 1$. Then

•
$$\phi^2(z) = (z^2 + 1)^2 + 1 = z^4 + 2z^2 + 2$$
,
• $\phi^3(z) = (z^4 + 2z^2 + 2)^2 + 1 = z^8 + 4z^6 + 8z^4 + 8z^2 + 5$,
• $\phi^n(z) = z^{(2^n)} + \text{big mess.}$

Periodic Points

Definition

A fixed point of ϕ is a point z_0 such that $\phi(z_0) = z_0$.

Example. If $\phi(z) = z^2$, then 0, 1, and ∞ are fixed points of ϕ .

(And that's it, since any fixed point besides ∞ must satisfy $\phi(z) = z$, which means $z^2 - z = 0$.)

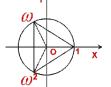
Definition

More generally, a **periodic point** of ϕ of period $n \ge 1$ (a.k.a an *n*-periodic point) is a point z_0 such that $\phi^n(z_0) = z_0$.

The smallest positive integer *n* such that $\phi(z_0) = z_0$ is the **(exact)** period of z_0 .

2-Periodic Points of z^2

Example. If $\phi(z) = z^2$, then $\omega = e^{2\pi i/3}$ is a 2-periodic point of ϕ : We see $\phi(\omega) = \omega^2 = e^{4\pi i/3}$, and $\phi^2(\omega) = \omega^4 = \omega$. We say $\{\omega, \omega^2\}$ is a 2-cycle.



To find them: Solving $\phi^2(z) = z$ gives $z^4 = z$, i.e., $[z = \infty \text{ or}] \quad z(z-1)(z^2 + z + 1) = 0$, i.e., $z = \infty, 0, 1, \omega, \omega^2$.

Some Periodic Points of $z^2 - 1$

Example. If $\phi(z) = z^2 - 1$, then the fixed points are ∞ and the roots of $z^2 - z - 1 = 0$, which means $\infty, \frac{1 \pm \sqrt{5}}{2}$.

To find the 2-periodic points, we solve $\phi^2(z) = z$:

$$(z^2 - 1)^2 - 1 = z,$$

that is, $z^4 - 2z^2 - z = 0$, which factors as $(z^2 - z - 1)(z^2 + z) = 0$. Throw away $z^2 - z - 1$ (those were fixed points, not 2-periodic points), and the only 2-periodic points are 0 and -1.

Sure enough, $\phi(0) = -1$ and $\phi(-1) = 0$.

Classifying Periodic Points

Consider $\phi(z) = z^2$ near the fixed points at 0 and 1.

For z near 0 (say, |z| < 1), then $\phi(z)$ is **even closer** to 0. (I.e., $|\phi(z)| < |z|$.)

For *z* near 1 (say, |z-1| < 1/2), then $\phi(z)$ is **farther away** from 1. (I.e., $|\phi(z) - 1| > |z-1|$.)

What's going on?

More generally, if $\phi(a) = a$, let $\lambda = \phi'(a)$. The Taylor series is:

$$\phi(z)=a+\lambda(z-a)+c_2(z-a)^2+c_3(z-a)^3+\cdots$$

So for z close to a (i.e., |z - a| small):

$$\phi(z) - a \approx \lambda(z - a).$$

Multipliers of Periodic Points

Definition

Let ϕ be a rational function, and let $a \in \overline{\mathbb{C}}$ be a periodic point of exact period $n \ge 1$. The **multiplier** of *a* is

$$\lambda = (\phi^n)'(\mathbf{a})$$

= $[\phi'(\mathbf{a})] \cdot [\phi'(\phi(\mathbf{a}))] \cdot [\phi'(\phi^2(\mathbf{a}))] \cdots [\phi'(\phi^{n-1}(\mathbf{a}))].$

If $|\lambda| < 1$, we say *a* is **attracting**. If $|\lambda| > 1$, we say *a* is **repelling**. If $|\lambda| = 1$, we say *a* is **indifferent**.

Examples

Example. For $\phi(z) = z^2$, 0 is an attracting fixed point (since $\phi'(0) = 0$), and

1 is a repelling fixed point (since $\phi'(1) = 2$).

(Note: ∞ is also attracting.)

Example. For $\phi(z) = z^2 - 1$, {0,-1} is an attracting 2-cycle, because $\phi'(0) = 0$ and $\phi'(-1) = -2$, so that $(\phi^2)'(0) = (\phi^2)'(-1) = 0$.

Fatou and Julia Sets

Definition

Let ϕ be a rational function. The Fatou set ${\mathcal F}$ of ϕ is

$$\{z \in \overline{\mathbb{C}} : \text{there is a disk } D \ni z$$

s.t. if $w_1, w_2 \in D$, then
 $\forall n \ge 1, \phi^n(w_1) \text{ is near } \phi^n(w_2)\}$

The complement is the Julia set $\mathcal{J} = \overline{\mathbb{C}} \smallsetminus \mathcal{F}$.

Fact: All attracting periodic points are in the Fatou set, and all repelling periodic points are in the Julia set.

Deeper Fact: The repelling periodic points are **dense** in the Julia set.

Example: The Fatou and Julia Sets of z^2

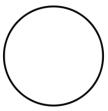
Example. $\phi(z) = z^2$:

If |z| < 1, then $\phi^n(w) \to 0$ for every nearby w. So $\{z \in \mathbb{C} : |z| < 1\} \subseteq \mathcal{F}$.

If |z| > 1, then $\phi^n(w) \to \infty$ for every nearby w. So $\{z \in \mathbb{C} : |z| > 1\} \subseteq \mathcal{F}$.

If |z| = 1, then: uh-oh.

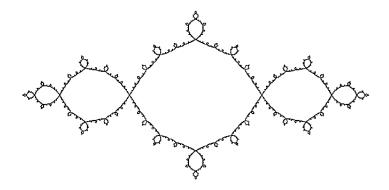
So ${\mathcal J}$ is the unit circle:



The Julia Set of $\phi(z) = z^2 + 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Julia Set of $\phi(z) = z^2 - 1$

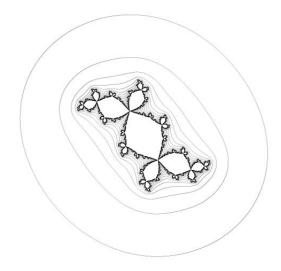


・ロト ・聞ト ・ヨト ・ヨト

æ

("The Basilica")

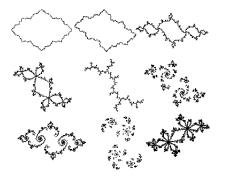
The Julia Set of $\phi(z) = z^2 + (.123 + .745i)$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

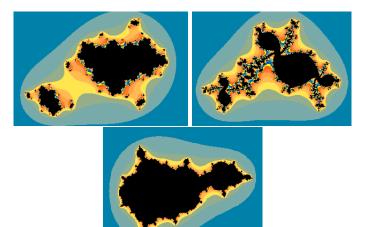
(Douady's "Rabbit")

The Julia Set of $\phi(z) = z^2 + c$ for Various c



c =5	c =5 + .3i	c = -1 + .16i
c =12 + .765i	c = i	c =3 + .71i
c =775 + .177i	c = .44 + .29i	c =513579i

Julia Sets of Some Cubic Polynomials



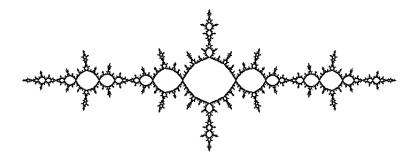
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

More Facts about Fatou and Julia Sets

- 1. Points in \mathcal{F} map to \mathcal{F} , and points in \mathcal{J} map to \mathcal{J} .
- 2. Any connected component of \mathcal{F} maps onto another (or the same) component of \mathcal{F} .
- 3. All Fatou components are preperiodic. (Sullivan, 1985; **very** deep theorem)
- 4. If a periodic Fatou component contains an attracting periodic point, then there's a critical point somewhere in the cycle of components.
- 5. (Special case of (4) for quadratic polynomials): Suppose φ(z) = z² + c. Then φ has at most two attracting periodic cycles: {∞}, and maybe one other. (The other has to attract the critical point at 0.)

From now on, let's only consider $\phi_c(z) = z^2 + c$.

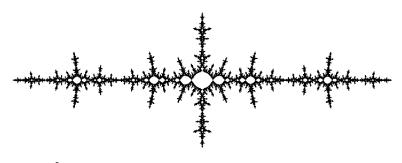
A Period 4 Attracting Fatou Component



(日)

 $\phi(z) = z^2 + c$ for $c \approx -1.31$.

A Period 8 Attracting Fatou Component



(日)

э

 $\phi(z) = z^2 + c$ for $c \approx -1.38$.

The Mandelbrot Set

Note: If $\phi_c(z)$ has an attracting cycle (besides ∞), then it attracts 0, so

$$\{\phi_c^n(0):n\geq 1\}$$

is a **bounded** set.

But lots of other ϕ_c have this property, too

Example: $\phi_{-2}(z) = z^2 - 2$ has $\mathcal{J} = [-2, 2] \subseteq \mathbb{R}$, with all of \mathcal{F} attracted to ∞ , so there are no attracting cycles besides $\{\infty\}$. However, $\phi_{-2}(0) = -2$, which is fixed, so $\phi_{-2}^n(0) = -2$ for all

 $n \ge 1$.

The Mandelbrot Set

Definition The **Mandelbrot set** is

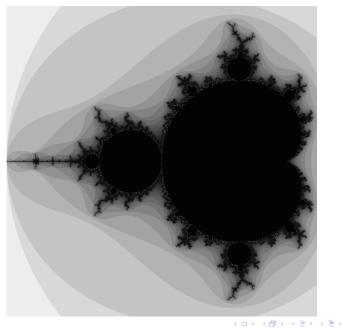
 $\mathcal{M} = \{ c \in \mathbb{C} : \{ \phi_c^n(0) : n \ge 1 \} \text{ is bounded} \}.$

(Benoit Mandelbrot, 1980)

Facts:

- 1. The Julia set \mathcal{J} of ϕ_c is connected **if and only if** $c \in \mathcal{M}$.
- 2. For every $c \in \mathcal{M}$, $|c| \leq 2$.
- M is connected. (Hard Theorem: Douady and Hubbard, 1984.)

The Mandelbrot Set



€ 9QQ

Where are the *c*'s with Attracting Fixed Points? Let's compute

 $\mathcal{H}_1 = \{ c \in \mathbb{C} : \phi_c \text{ has a finite attracting fixed point} \}.$

1. The fixed points are roots of $z^2 - z + c = 0$. That means

$$z = \frac{1 \pm \sqrt{1 - 4c}}{2}$$

Write
$$1-4c=re^{i\theta}$$
, so that $c=rac{1}{4}(1-re^{i\theta})$. $(r\geq 0.)$ So $z=rac{1}{2}(1\pm \sqrt{r}e^{i\theta/2}).$

2. To be attracting, one must have $|\phi_c'(z)| < 1$. That is, |2z| < 1, which is to say

$$\left|1\pm\sqrt{r}e^{i\theta/2}\right|<1.$$

(for at least one choice of + or -.)

3. Writing $e^{i\theta} = \cos \theta + i \sin \theta$, $|1 \pm \sqrt{r}e^{i\theta/2}| < 1$ means

$$1 > \left| \left(1 \pm \sqrt{r} \cos \frac{\theta}{2} \right) \pm i \sqrt{r} \sin \frac{\theta}{2} \right|.$$

Squaring, that is

$$1 > \left(1 \pm \sqrt{r}\cos\frac{\theta}{2}\right)^2 + r\sin^2\frac{\theta}{2} = 1 \pm 2\sqrt{r}\cos\frac{\theta}{2} + r,$$

so that

$$r<\mp 2\sqrt{r}\cosrac{ heta}{2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for at least one of - or +.

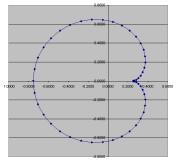
4. But r > 0!!! So, squaring both sides of $r < \pm 2\sqrt{r}\cos(\theta/2)$ gives

$$r^2 < 4r\cos^2\frac{\theta}{2} = 2r(1+\cos\theta),$$

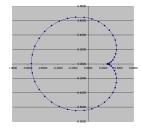
or in other words, $r < 2(1 + \cos \theta)$.

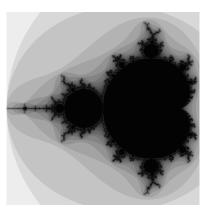
That means $re^{i\theta}$ is inside the cardioid $r = 2(1 + \cos \theta)$.

And **that** means $c = \frac{1}{4}(1 - re^{i\theta})$ is inside the cardioid:



Reminder of The Mandelbrot Set





◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Where are the c's with Attracting 2-cycles?

Let's compute

 $\mathcal{H}_2 = \{ c \in \mathbb{C} : \phi_c \text{ has a finite attracting 2-cycle} \}.$

1.
$$\phi_c^2(z) = z^4 + 2cz^2 + (c^2 + c)$$
, so

$$\phi_c^2(z) - z = z^4 + 2cz^2 - z + (c^2 + c) = (z^2 - z + c)(z^2 + z + (c + 1)).$$

The first factor is the fixed points, so we throw it away. So the 2-periodic points are the two roots of

$$z^2 + z + (c+1) = 0.$$

2. We compute

$$(\phi_c^2)'(z) = 4z^3 + 4cz = 4z\phi(z).$$

If z is a 2-periodic point, so that $z^2 + z + c + 1 = 0$, we get $\phi(z) = z^2 + c = -z - 1$, so

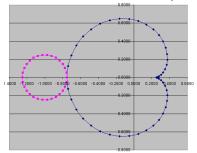
$$(\phi_c^2)'(z) = 4z(-z-1) = -4(z^2+z) = 4(c+1).$$

3. So we have an attracting 2-cycle if |4(c+1)| < 1.

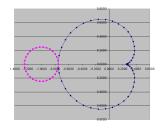
If we write c = a + bi and square, this means

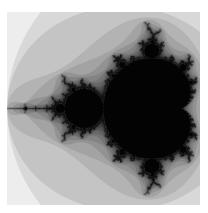
$$(a+1)^2 + b^2 < \left(rac{1}{4}
ight)^2$$

which means c is inside the circle of radius 1/4 centered at -1:



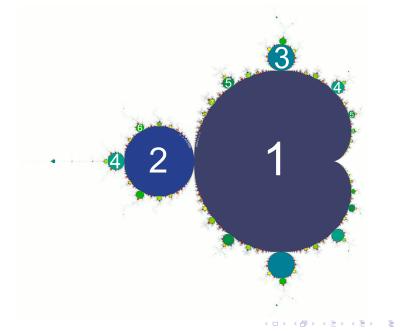
Another Reminder of The Mandelbrot Set



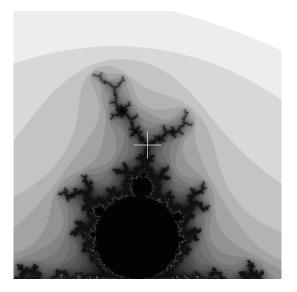


◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

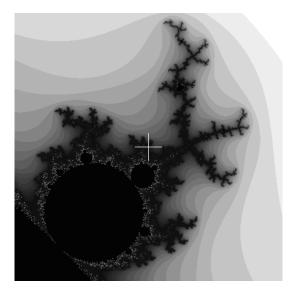
Periods of Some Other Bulbs



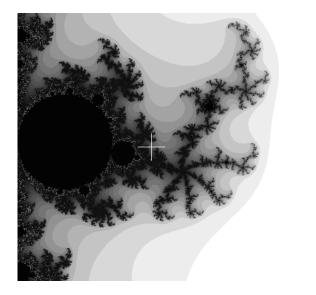
The 3-bulb



A 4-bulb

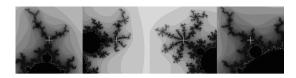


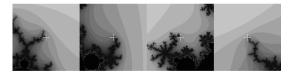
A 6-bulb



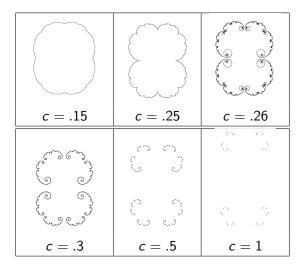
(ロ) (型) (主) (主) (主) のへで

Some Associated Julia Sets



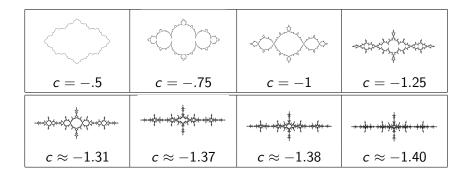


Moving Right out of the Cardioid: $\phi_c(z) = z^2 + c$



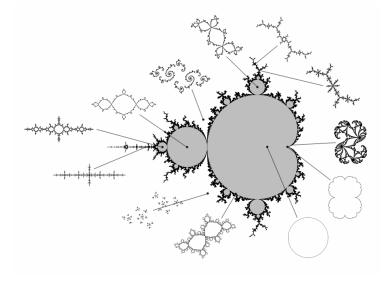
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Moving Left out of the Cardioid: $\phi_c(z) = z^2 + c$



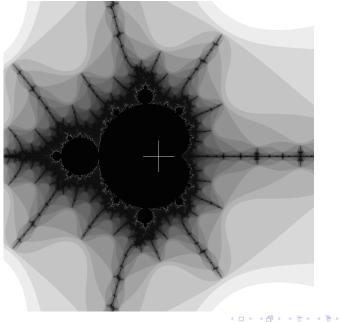
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Julia Sets for Some Specific Parameters

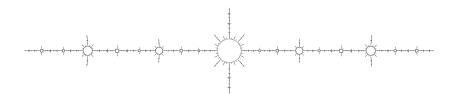


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A Closeup of ${\cal M}$ near c=-1.755

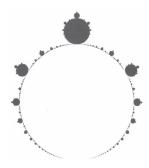


The Airplane Julia Set: $c \approx -1.755$



Mandelbrot's Picture of the Mandelbrot Set

250 Annals New York Academy of Sciences



"A striking fact, which I think is new, becomes apparent here: FIGURE 1 is made of several disconnected portions, as follows."

▲□▼▲□▼▲□▼▲□▼ □ ● ●

FIGURE 1. Complex plane map of the λ -domain Q. The real axis of the λ -plane points up from $\lambda = 1$. The center of the circle is $\lambda = 2$ and the tip of the whole is $\lambda = 4$.

1, the remainder of Q being symmetric to this figure with respect to the line $\text{Re}(\lambda)=1.$

A striking fact, which I think is new, becomes apparent here: FIGURE I is made of several disconnected portions, as follows.

The Domain of Confluence L, and Its Fractal Boundary

The most visible feature of FIGURE 1 is the large connected domain $\mathcal L$ surrounding $\lambda=2$. This $\mathcal L$ splits into a sequence of subdomains one can introduce in successive stages.

Two Big Open Questions

1. Let

 $\mathcal{H} = \{ c \in \mathbb{C} : \phi_c \text{ has an attracting cycle besides } \infty \}.$

Big Conjecture: \mathcal{H} is dense in \mathcal{M} .

The density of \mathcal{H} would be implied by another **Big Conjecture**: \mathcal{M} is locally connected.

2. What is the area of the boundary ∂M ? [Shishikura (1994) showed ∂M has Hausdorff dimension 2.]