A Beginner's Introduction to the Mandelbrot Set

Robert L. Benedetto

Amherst College

Thursday, October 10, 2019

The Complex Plane

$$\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\} = \{re^{i\theta} : r, \theta \in \mathbb{R}\}$$
 where $re^{i\theta} = (r\cos\theta) + i(r\sin\theta)$.

If $z = x + iy = re^{i\theta} \in \mathbb{C}$, we say:

- $ightharpoonup x = \operatorname{Re} z$ is the **real part** of z,
- $ightharpoonup y = \operatorname{Im} z$ is the **imaginary part** of z,
- $ightharpoonup r = |z| = \sqrt{x^2 + y^2}$ is the **modulus** of z,
- \bullet $\theta = \arg z$ is the **argument** of z.

Arithmetic in C

Addition:

Vector-style: $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$

Multiplication:

Multiply moduli (lengths); add arguments (angles):

$$z_1z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) = r_1r_2e^{i(\theta_1 + \theta_2)}$$

The Riemann Sphere

The "Riemann sphere" is the set

$$\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}.$$

Think of $\overline{\mathbb{C}}$ as the surface of a sphere, so points with large absolute value are "close to ∞ ."

Example: 1000, -1000, 1000i, -1000i are all very close to each other in $\overline{\mathbb{C}}$, even though they are very far apart in \mathbb{C} .

Dynamics of Polynomials

Let f(z) be a polynomial of degree $d \ge 2$. So

$$f:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$$

Write

$$f^{1}(z) = f(z),$$
 $f^{2}(z) = f \circ f(z),$ $f^{3}(z) = f \circ f \circ f(z),$ etc.

Example. $f(z) = z^2$. Then $f^2(z) = z^4$, $f^3(z) = z^8$, $f^4(z) = z^{16}$, and in general, $f^n(z) = z^{(2^n)}$.

Example. $f(z) = z^2 + 1$. Then

$$f^{2}(z) = (z^{2} + 1)^{2} + 1 = z^{4} + 2z^{2} + 2,$$

$$f^{3}(z) = (z^{4} + 2z^{2} + 2)^{2} + 1 = z^{8} + 4z^{6} + 8z^{4} + 8z^{2} + 5,$$

• $f^n(z) = z^{(2^n)} + \text{big mess.}$

Periodic Points

Definition

A **fixed point** of f is a point $z_0 \in \overline{\mathbb{C}}$ such that $f(z_0) = z_0$.

Example. If $f(z) = z^2$, then 0, 1, and ∞ are fixed points of f.

(And that's it, since any fixed point besides ∞ must satisfy f(z) = z, which means $z^2 - z = 0$.)

Definition

More generally, a **periodic point** of f of period $n \ge 1$ (a.k.a an n-periodic point) is a point $z_0 \in \overline{\mathbb{C}}$ such that $f^n(z_0) = z_0$.

The smallest positive integer n such that $f^n(z_0) = z_0$ is the **(exact) period** of z_0 .

2-Periodic Points of z^2

Example.
$$\omega=e^{2\pi i/3}=\frac{-1+i\sqrt{3}}{2}$$
 satisfies $\omega^3=1.$

As a result, ω is a 2-periodic point of $f(z) = z^2$:

We see
$$f(\omega) = \omega^2 = e^{4\pi i/3} = \frac{-1 - i\sqrt{3}}{2}$$
, $f^2(\omega) = \omega^4 = \omega$.

We say $\{\omega, \omega^2\}$ is a **2-cycle**.

To find them: Solving
$$f^2(z)=z$$
 gives $z^4=z$, i.e., $[z=\infty \text{ or}]$ $z(z-1)(z^2+z+1)=0$, i.e., $z=\infty,0,1,\omega,\omega^2$.

Some Periodic Points of $z^2 - 1$

Example. If $f(z) = z^2 - 1$, then the fixed points are ∞ and the roots of $z^2 - z - 1 = 0$, which means $\infty, \frac{1 \pm \sqrt{5}}{2}$.

To find the 2-periodic points, we solve $f^2(z) = z$:

$$(z^2-1)^2-1=z,$$

that is, $z^4 - 2z^2 - z = 0$, which factors as $(z^2 - z - 1)(z^2 + z) = 0$.

Discard z^2-z-1 (those were fixed points, not 2-periodic points), and the only 2-periodic points are 0 and -1.

Sure enough, f(0) = -1 and f(-1) = 0. So $\{0, -1\}$ is a 2-cycle.

Classifying Periodic Points

Consider $f(z) = z^2$ near the fixed points at 0 and 1.

For z near 0 (say, |z| < 1), then f(z) is **even closer** to 0. (l.e., |f(z)| < |z|.)

For z near 1 (say, |z-1| < 1/2), then f(z) is **farther away** from 1. (I.e., |f(z)-1| > |z-1|.)

What's going on?

More generally, if f(a) = a, let $\lambda = f'(a)$. The Taylor series is:

$$f(z) = a + \lambda(z-a) + c_2(z-a)^2 + c_3(z-a)^3 + \cdots$$

So for z close to a (i.e., |z - a| small):

$$f(z) - a \approx \lambda(z - a)$$
.

Multipliers of Periodic Points

Definition

Let f be a polynomial, and let $a \in \mathbb{C}$ be a periodic point of exact period $n \geq 1$. The **multiplier** of a is

$$\lambda = (f^n)'(a)$$

$$= (f \circ f \circ \cdots \circ f)'(a)$$

$$= [f'(a)] \cdot [f'(f(a))] \cdot [f'(f^2(a))] \cdot \cdots \cdot [f'(f^{n-1}(a))].$$

If $|\lambda| < 1$, we say a is **attracting**.

If $|\lambda| > 1$, we say a is **repelling**.

If $|\lambda| = 1$, we say a is **indifferent**.

Recall: For z close to a, $|f^n(z) - a| \approx |\lambda| |z - a|$.

Examples

Example. For $f(z)=z^2$, 0 is an attracting fixed point (since f'(0)=0, and |0|<1), and 1 is a repelling fixed point (since f'(1)=2, and |2|>1). (Note: ∞ is also attracting, for any polynomial of degree ≥ 2 .)

Example. For
$$f(z) = z^2 - 1$$
, $\{0, -1\}$ is an attracting 2-cycle, because $f'(0) = 0$ and $f'(-1) = -2$, so that $(f^2)'(0) = (f^2)'(-1) = 0 \cdot (-2) = 0$.

Fatou and Julia Sets

Definition

Let f be a polyomial. The **Fatou set** \mathcal{F} of f is

$$\{z \in \overline{\mathbb{C}} : \text{there is a disk } D \ni z$$

s.t. if $w_1, w_2 \in D$, then
 $\forall n \geq 1, f^n(w_1) \text{ is close to } f^n(w_2) \}$

The complement is the **Julia set** $\mathcal{J} = \overline{\mathbb{C}} \setminus \mathcal{F}$.

Fact: All attracting periodic points are in the Fatou set, and all repelling periodic points are in the Julia set.

Example: The Fatou and Julia Sets of z^2

Example. $f(z) = z^2$:

If |z|<1, then $f^n(w)\to 0$ for every nearby w. So $\{z\in\mathbb{C}:|z|<1\}\subseteq\mathcal{F}.$

If |z|>1, then $f^n(w)\to\infty$ for every nearby w. So $\{z\in\mathbb{C}:|z|>1\}\subseteq\mathcal{F}.$

If |z| = 1, then: uh-oh.

So \mathcal{J} is the unit circle:

The Julia Set of $f(z) = z^2 + 1$

The Julia Set of $f(z) = z^2 - 1$

("The Basilica")

The Julia Set of $f(z) = z^2 + (.123 + .745i)$

(Douady's "Rabbit")

The Julia Sets of $f(z) = z^2 + c$ for Various c

c =5	c =5 + .3i	c = -1 + .16i
c =12 + .765i	c = i	c =3 + .71i
c =775 + .177i	c = .44 + .29i	c =513579i

Julia Sets of Some Cubic Polynomials

More Facts about Complex Dynamics

- 1. Points in \mathcal{F} map to \mathcal{F} , and points in \mathcal{J} map to \mathcal{J} .
- 2. If f(z) has an attracting periodic point a, then there must be a critical point b whose iterates $f^n(b)$ are attracted to a.
- (Special case of (2) for quadratic polynomials): Suppose f_c(z) = z² + c. Then besides the attracting fixed point at ∞, f_c has at most one attracting periodic cycle in ℂ. (f_c has only one critical point, at z = 0.)

From now on, let's only consider $f_c(z) = z^2 + c$.

The orbit of the critical point 0

Note: If $f_c(z) = z^2 + c$ has an attracting cycle (besides ∞), then it attracts 0, so

$$\{f_c^n(0): n \geq 1\}$$

is a **bounded** set.

Note: Lots of other f_c have this property, too.

Example:
$$f_{-2}(z) = z^2 - 2$$
 has $0 \mapsto -2 \mapsto 2 \mapsto 2$

Example:
$$f_i(z) = z^2 + i$$
 has $0 \mapsto i \mapsto i - 1 \mapsto -i \mapsto i - 1$

BUT:
$$f_1(z) = z^2 + 1$$
 does **not**, since: $0 \mapsto 1 \mapsto 2 \mapsto 5 \mapsto 26 \mapsto 677 \mapsto \cdots$

The Mandelbrot Set

Recall
$$f_c(z) = z^2 + c$$
.

Definition

The Mandelbrot set is

$$\mathcal{M} = \{c \in \mathbb{C} : \{f_c^n(0) : n \ge 1\} \text{ is bounded}\}.$$

(Benoit Mandelbrot, 1980)

Facts:

- 1. The Julia set \mathcal{J} of f_c is connected **if and only if** $c \in \mathcal{M}$.
- 2. For every $c \in \mathcal{M}$, $|c| \leq 2$.
- M is connected.
 (Hard Theorem: Douady and Hubbard, 1984.)

The Mandelbrot Set

Zooming in: -2.2 < x < 0.8 and -1.2 < y < 1.2

Using Mandebrot viewer/explorer at:

http://math.hws.edu/eck/js/mandelbrot/MB.html

(credits: David Eck at Hobart and William Smith)

-.132 < x < -.032 and .608 < y < .684 (30X)

-.0572 < x < -.0477 and .6483 < y < .6554 (300X)

-.04985 < x < -.04958 and .65044 < y < .65064 (11000X)

Two Big Open Questions

1. Let

$$\mathcal{H} = \{c \in \mathbb{C} : f_c \text{ has an attracting cycle in } \mathbb{C}\}.$$

Big Conjecture: \mathcal{H} is dense in \mathcal{M} .

The density of $\ensuremath{\mathcal{H}}$ would be implied by another

Big Conjecture: \mathcal{M} is locally connected.

2. What is the area of the boundary $\partial \mathcal{M}$? [Shishikura (1994) showed $\partial \mathcal{M}$ has Hausdorff dimension 2.]

-.04985 < x < -.04958 and .65044 < y < .65064

Where are the c's with Attracting Fixed Points?

Let's compute, for $f_c(z) = z^2 + c$, the set:

 $\mathcal{H}_1 = \{c \in \mathbb{C} : f_c \text{ has an attracting fixed point}\}.$

1. The fixed points are roots of $z^2 - z + c = 0$. That means

$$z=\frac{1\pm\sqrt{1-4c}}{2}.$$

Write $1-4c=re^{i\theta}$, so that $c=\frac{1}{4}(1-re^{i\theta})$. $(r\geq 0.)$ So

$$z=\frac{1}{2}(1\pm\sqrt{r}e^{i\theta/2}).$$

2. To be attracting, one must have $|f_c'(z)| < 1$. That is, |2z| < 1, which is to say

$$\left|1 \pm \sqrt{r}e^{i\theta/2}\right| < 1.$$

(for at least one choice of + or -.)

3. Writing $e^{i\theta} = \cos \theta + i \sin \theta$, $|1 \pm \sqrt{r}e^{i\theta/2}| < 1$ means

$$1 > \left| \left(1 \pm \sqrt{r} \cos \frac{\theta}{2} \right) \pm i \sqrt{r} \sin \frac{\theta}{2} \right|.$$

Squaring, that is

$$1 > \left(1 \pm \sqrt{r}\cos\frac{\theta}{2}\right)^2 + r\sin^2\frac{\theta}{2} = 1 \pm 2\sqrt{r}\cos\frac{\theta}{2} + r,$$

so that

$$r < \mp 2\sqrt{r}\cos\frac{\theta}{2},$$

for at least one of - or +.

4. Squaring $r < \mp 2\sqrt{r}\cos(\theta/2)$ gives

$$r^2 < 4r\cos^2\frac{\theta}{2} = 2r(1+\cos\theta),$$

or in other words, $r < 2(1 + \cos \theta)$.

That means $re^{i\theta}$ is inside the cardioid $r = 2(1 + \cos \theta)$.

And **that** means $c = \frac{1}{4}(1 - re^{i\theta})$ is inside this cardioid:

Reminder of The Mandelbrot Set

Where are the c's with Attracting 2-cycles?

Let's compute

$$\mathcal{H}_2 = \{c \in \mathbb{C} : f_c \text{ has an attracting 2-cycle}\}.$$

1.
$$f_c^2(z) = z^4 + 2cz^2 + (c^2 + c)$$
, so

$$f_c^2(z) - z = z^4 + 2cz^2 - z + (c^2 + c) = (z^2 - z + c)(z^2 + z + (c+1)).$$

The first factor is the fixed points, so we discard it. Thus, the 2-periodic points are the two roots of

$$z^2 + z + (c+1) = 0.$$

2. We compute

$$(f_c^2)'(z) = 4z^3 + 4cz = 4zf(z).$$

If z is a 2-periodic point, so that $z^2 + z + c + 1 = 0$, we get $f(z) = z^2 + c = -z - 1$, so

$$(f_c^2)'(z) = 4z(-z-1) = -4(z^2+z) = 4(c+1).$$

3. So $f_c(z) = z^2 + c$ has an attracting 2-cycle if |4(c+1)| < 1. If we write c = a + bi and square, this means

$$(a+1)^2+b^2<\left(\frac{1}{4}\right)^2,$$

which means c is inside the circle of radius 1/4 centered at -1:

Another Reminder of The Mandelbrot Set

Periods of Some Other Bulbs

The 3-bulb

A 4-bulb

A 6-bulb

Moving Right out of the Cardioid: $f_c(z) = z^2 + c$

Moving Left out of the Cardioid: $f_c(z) = z^2 + c$

	«QQD»	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
c =5	c =75	c = -1	c = -1.25
		**	**************************************
$c \approx -1.31$	$c \approx -1.37$	$c \approx -1.38$	$c \approx -1.40$

Julia Sets for Some Specific Parameters

A Closeup of ${\cal M}$ near c=-1.755

The Airplane Julia Set: $c \approx -1.755$

Comparing Julia Sets to the Mandelbrot Set

(Tan's Theorem, 1990)

Mandelbrot's Picture of the Mandelbrot Set

250 Annals New York Academy of Sciences

FIGURE 1. Complex plane map of the
$$\lambda$$
-domain Q . The real axis of the λ -plane points up from $\lambda = 1$. The center of the circle is $\lambda = 2$ and the tip of the whole is $\lambda = 4$.

1, the remainder of Q being symmetric to this figure with respect to the line $Re(\lambda) = 1$.

A striking fact, which I think is new, becomes apparent here: FIGURE I is made of several disconnected portions, as follows.

The Domain of Confluence L. and Its Fractal Boundary

$$g_{\lambda}(z) = \lambda z (1-z)$$

"A striking fact, which I think is new, becomes apparent here: ${\rm FIGURE}~1$ is made of several disconnected portions, as follows."

The most visible feature of Figure 1 is the large connected domain $\mathcal L$ surrounding $\lambda=2$. This $\mathcal L$ splits into a sequence of subdomains one can introduce in successive