A Beginner's Introduction to the Mandelbrot Set

Robert L. Benedetto

Amherst College

Thursday, October 10, 2019

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Complex Plane

 $\mathbb{C} = \{\mathsf{x} + \mathsf{i}\mathsf{y} : \mathsf{x}, \mathsf{y} \in \mathbb{R}\} = \{\mathsf{re}^{\mathsf{i}\theta} : \mathsf{r}, \theta \in \mathbb{R}\}$ where $re^{i\theta} = (r \cos \theta) + i(r \sin \theta)$.

 \overline{z} (\overline{z}) \overline{z}) \overline{z}) \overline{z}) \overline{z}

 2990

If $z = x + iy = re^{i\theta} \in \mathbb{C}$, we say:

 \blacktriangleright $x = \text{Re } z$ is the real part of z,

$$
y = \text{Im } z
$$
 is the **imaginary part** of z,

$$
r = |z| = \sqrt{x^2 + y^2}
$$
 is the **modulus** of z,

 \blacktriangleright θ = arg z is the **argument** of z.

Arithmetic in C

Addition:

Vector-style:
$$
\boxed{z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)}
$$

Multiplication:

Multiply moduli (lengths); add arguments (angles):

 $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

The Riemann Sphere

The "Riemann sphere" is the set

 $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$

Think of $\overline{\mathbb{C}}$ as the surface of a sphere, so points with large absolute value are "close to ∞ ."

Example: 1000, -1000 , 1000*i*, -1000 *i* are all very close to each other in $\overline{\mathbb{C}}$, even though they are very far apart in \mathbb{C} .

Dynamics of Polynomials

Let
$$
f(z)
$$
 be a polynomial of degree $d \ge 2$. So
 $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Write

$$
f1(z) = f(z), \t f2(z) = f \circ f(z),
$$

f³(z) = f \circ f \circ f(z), etc.

Example. $f(z) = z^2$. Then $f^2(z) = z^4$, $f^3(z) = z^8$, $f^4(z) = z^{16}$, and in general, $f''(z) = z^{(2^n)}$.

Example. $f(z) = z^2 + 1$. Then $f^{2}(z) = (z^{2} + 1)^{2} + 1 = z^{4} + 2z^{2} + 2,$ $f^{3}(z) = (z^{4} + 2z^{2} + 2)^{2} + 1 = z^{8} + 4z^{6} + 8z^{4} + 8z^{2} + 5,$ If $f^{n}(z) = z^{(2^{n})} + \text{big mess.}$

KORKA SERKER YOUR

Periodic Points

Definition

A fixed point of f is a point $z_0 \in \overline{\mathbb{C}}$ such that $f(z_0) = z_0$.

Example. If $f(z) = z^2$, then 0, 1, and ∞ are fixed points of f.

(And that's it, since any fixed point besides ∞ must satisfy $f(z) = z$, which means $z^2 - z = 0$.)

Definition

More generally, a **periodic point** of f of period $n \geq 1$ (a.k.a an *n*-periodic point) is a point $z_0 \in \overline{\mathbb{C}}$ such that $f''(z_0) = z_0$.

KORKAR KERKER SAGA

The smallest positive integer *n* such that $f''(z_0) = z_0$ is the (exact) period of z_0 .

2-Periodic Points of z^2

As a result, ω is a 2-periodic point of $f(z)=z^2$:

We see
$$
f(\omega) = \omega^2 = e^{4\pi i/3} = \frac{-1 - i\sqrt{3}}{2}
$$
, $f^2(\omega) = \omega^4 = \omega$.

KO KA KO KERKER KONGK

We say $\{\omega, \omega^2\}$ is a 2-cycle.

To find them: Solving $f^2(z) = z$ gives $z^4 = z$, i.e., $[z = \infty \text{ or}]$ $z(z-1)(z^2 + z + 1) = 0$, i.e., $z=\infty,0,1,\omega,\omega^2$.

Some Periodic Points of $z^2 - 1$

Example. If $f(z) = z^2 - 1$, then the fixed points are ∞ and the roots of $z^2-z-1=0$, which means $\infty, \frac{1\pm\sqrt{5}}{2}$ $\frac{1}{2}$.

To find the 2-periodic points, we solve $f^2(z) = z$:

$$
(z^2-1)^2-1=z,
$$

that is, $z^4-2z^2-z=0$, which factors as $(z^2-z-1)(z^2+z)=0.$ Discard $z^2 - z - 1$ (those were fixed points, not 2-periodic points), and the only 2-periodic points are 0 and -1 .

Sure enough, $f(0) = -1$ and $f(-1) = 0$. So $\{0, -1\}$ is a 2-cycle.

KORKAR KERKER SAGA

Classifying Periodic Points

Consider $f(z) = z^2$ near the fixed points at 0 and 1.

For z near 0 (say, $|z| < 1$), then $f(z)$ is even closer to 0. $(|e, |f(z)| < |z|.)$

For z near 1 (say, $|z-1| < 1/2$), then $f(z)$ is **farther away** from 1. $(I.e., |f(z) - 1| > |z - 1|.)$

What's going on?

More generally, if $f(a) = a$, let $\lambda = f'(a)$. The Taylor series is:

$$
f(z) = a + \lambda(z - a) + c_2(z - a)^2 + c_3(z - a)^3 + \cdots
$$

So for z close to a (i.e., $|z - a|$ small):

$$
f(z)-a\approx \lambda(z-a).
$$

KORKAR KERKER SAGA

Multipliers of Periodic Points

Definition

Let f be a polynomial, and let $a \in \overline{\mathbb{C}}$ be a periodic point of exact period $n \geq 1$. The **multiplier** of a is

$$
\lambda = (f^n)'(a)
$$

= $(f \circ f \circ \cdots \circ f)'(a)$
= $[f'(a)] \cdot [f'(f(a))] \cdot [f'(f^2(a))] \cdot \cdots \cdot [f'(f^{n-1}(a))].$
If $|\lambda| < 1$, we say *a* is **attracting**.
If $|\lambda| > 1$, we say *a* is **repelling**.
If $|\lambda| = 1$, we say *a* is **indifferent**.
Recall: For *z* close to *a*, $|f^n(z) - a| \approx |\lambda| |z - a|$.

KO K K Ø K K E K K E K V K K K K K K K K K

Examples

Example. For $f(z) = z^2$, 0 is an attracting fixed point (since $f'(0) = 0$, and $|0| < 1$), and

1 is a repelling fixed point (since $f'(1) = 2$, and $|2| > 1$).

(Note: ∞ is also attracting, for any polynomial of degree ≥ 2 .)

KORKAR KERKER SAGA

Example. For $f(z) = z^2 - 1$, ${0, -1}$ is an attracting 2-cycle, because $f'(0) = 0$ and $f'(-1) = -2$, so that $(f^2)'(0) = (f^2)'(-1) = 0 \cdot (-2) = 0$.

Fatou and Julia Sets

Definition Let f be a polyomial. The **Fatou set** F of f is ${z \in \overline{\mathbb{C}} : \text{there is a disk } D \ni z}$ s.t. if $w_1, w_2 \in D$, then $\forall n \geq 1$, $f^n(w_1)$ is close to $f^n(w_2)$ }

The complement is the **Julia set** $\mathcal{J} = \overline{\mathbb{C}} \setminus \mathcal{F}$.

Fact: All attracting periodic points are in the Fatou set, and all repelling periodic points are in the Julia set.

KORKAR KERKER SAGA

Example: The Fatou and Julia Sets of z^2

Example. $f(z) = z^2$:

If $|z| < 1$, then $f^n(w) \to 0$ for every nearby w. So ${z \in \mathbb{C} : |z| < 1} \subset \mathcal{F}.$

If $|z| > 1$, then $f''(w) \to \infty$ for every nearby w. So ${z \in \mathbb{C} : |z| > 1} \subset \mathcal{F}.$

If $|z|=1$, then: uh-oh.

So J is the unit circle:

KORKARYKERKER POLO

The Julia Set of $f(z) = z^2 + 1$

ing process of grant

KOKK@KKEKKEK E 1990

The Julia Set of $f(z) = z^2 - 1$

K ロ ト K 倒 ト K 差 ト K 差 ト

 299

目

("The Basilica")

The Julia Set of $f(z) = z^2 + (.123 + .745i)$

 299

B

メロトメ 倒 トメ 君 トメ 君 ト

(Douady's "Rabbit")

The Julia Sets of $f(z) = z^2 + c$ for Various c

 290 **K ロ ▶ K 御 ▶ K 唐 ▶ K** ∍

Julia Sets of Some Cubic Polynomials

イロト イ部 トイ君 トイ君 ト 重 299 More Facts about Complex Dynamics

- 1. Points in $\mathcal F$ map to $\mathcal F$, and points in $\mathcal J$ map to $\mathcal J$.
- 2. If $f(z)$ has an attracting periodic point a, then there must be a critical point b whose iterates $f^n(b)$ are attracted to a.

KORKAR KERKER SAGA

3. (Special case of (2) for quadratic polynomials): Suppose $f_c(z) = z^2 + c$. Then besides the attracting fixed point at ∞ . f_c has at most one attracting periodic cycle in \mathbb{C} . (f_c has only one critical point, at $z = 0$.)

From now on, let's only consider $f_c(z) = z^2 + c$.

The orbit of the critical point 0

Note: If $f_c(z) = z^2 + c$ has an attracting cycle (besides ∞), then it attracts 0, so

 ${f_c^n(0) : n \ge 1}$

KELK KØLK VELKEN EL 1990

is a bounded set.

Note: Lots of other f_c have this property, too.

Example: $f_{-2}(z) = z^2 - 2$ has $0 \mapsto -2 \mapsto 2 \mapsto 2$

Example: $f_i(z) = z^2 + i$ has $0 \mapsto i \mapsto i - 1 \mapsto -i \mapsto i - 1$

BUT: $f_1(z) = z^2 + 1$ does not, since: $0 \mapsto 1 \mapsto 2 \mapsto 5 \mapsto 26 \mapsto 677 \mapsto \cdots$

The Mandelbrot Set

Recall
$$
f_c(z) = z^2 + c
$$
.
Definition

The Mandelbrot set is

$$
\mathcal{M} = \{c \in \mathbb{C} : \{f_c^n(0) : n \geq 1\} \text{ is bounded}\}.
$$

(Benoit Mandelbrot, 1980)

Facts:

1. The Julia set $\mathcal J$ of f_c is connected if and only if $c \in \mathcal M$.

KORKARYKERKER POLO

- 2. For every $c \in \mathcal{M}$, $|c| \leq 2$.
- 3. M is connected. (Hard Theorem: Douady and Hubbard, 1984.)

The Mandelbrot Set

Zooming in: $-2.2 < x < 0.8$ and $-1.2 < y < 1.2$

Using Mandebrot viewer/explorer at: http://math.hws.edu/eck/js/mandelbrot/MB.html

KORKA SERKER YOUR

(credits: David Eck at Hobart and William Smith)

$-.132 < x < -.032$ and $.608 < y < .684$ (30X)

$(300X)$ $-.0572 < x < -.0477$ and $.6483 < y < .6554$

 $-0.04985 < x < -0.04958$ and $0.65044 < y < 0.65064$ (11000X)

Two Big Open Questions

1. Let

 $\mathcal{H} = \{c \in \mathbb{C} : f_c$ has an attracting cycle in $\mathbb{C}\}.$

Big Conjecture: H is dense in M .

The density of H would be implied by another **Big Conjecture:** M is locally connected.

2. What is the area of the boundary ∂M ? [Shishikura (1994) showed ∂M has Hausdorff dimension 2.]

KORKAR KERKER SAGA

 $-0.04985 < x < -0.04958$ and $0.65044 < y < 0.65064$

Where are the c's with Attracting Fixed Points?

Let's compute, for
$$
f_c(z) = z^2 + c
$$
, the set:

 $\mathcal{H}_1 = \{c \in \mathbb{C} : f_c$ has an attracting fixed point}.

1. The fixed points are roots of $z^2-z+c=0$. That means

$$
z=\frac{1\pm\sqrt{1-4c}}{2}.
$$

Write
$$
1 - 4c = re^{i\theta}
$$
, so that $c = \frac{1}{4}(1 - re^{i\theta})$. ($r \ge 0$.) So

$$
z = \frac{1}{2}(1 \pm \sqrt{r}e^{i\theta/2}).
$$

2. To be attracting, one must have $|f_c'(z)| < 1$. That is, $|2z| < 1$, which is to say √

$$
\left|1\pm\sqrt{r}e^{i\theta/2}\right|<1.
$$

KELK KØLK VELKEN EL 1990

(for at least one choice of $+$ or $-$.)

3. Writing $e^{i\theta} = \cos \theta + i \sin \theta$, $|1 \pm \sqrt{r}e^{i\theta/2}| < 1$ means $1 > |$ $\Big(1\pm$ √ $\frac{1}{r}$ cos $\frac{\theta}{2}$ 2 $\big)$ ± i \sqrt{r} sin $\frac{\theta}{2}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$.

Squaring, that is

$$
1 > \left(1 \pm \sqrt{r} \cos \frac{\theta}{2}\right)^2 + r \sin^2 \frac{\theta}{2} = 1 \pm 2\sqrt{r} \cos \frac{\theta}{2} + r,
$$

so that

$$
r<\mp 2\sqrt{r}\cos\frac{\theta}{2},
$$

KORKARYKERKER POLO

for at least one of $-$ or $+$.

4. Squaring $r < \mp 2\sqrt{ }$ $r\cos(\theta/2)$ gives

$$
r^2 < 4r\cos^2\frac{\theta}{2} = 2r(1+\cos\theta),
$$

or in other words, $r < 2(1 + \cos \theta)$.

That means $re^{i\theta}$ is inside the cardioid $r = 2(1 + \cos \theta)$.

And **that** means $c = \frac{1}{4}$ $\frac{1}{4}(1 - re^{i\theta})$ is inside this cardioid:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Reminder of The Mandelbrot Set

Kロトメ部トメミトメミト ミニのQC

Where are the c's with Attracting 2-cycles?

Let's compute

$$
\mathcal{H}_2 = \{c \in \mathbb{C} : f_c \text{ has an attracting 2-cycle}\}.
$$

1.
$$
f_c^2(z) = z^4 + 2cz^2 + (c^2 + c)
$$
, so
\n $f_c^2(z) - z = z^4 + 2cz^2 - z + (c^2 + c) = (z^2 - z + c)(z^2 + z + (c + 1))$.

The first factor is the fixed points, so we discard it. Thus, the 2-periodic points are the two roots of

$$
z^2 + z + (c + 1) = 0.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

2. We compute

$$
(f_c^2)'(z) = 4z^3 + 4cz = 4zf(z).
$$

If z is a 2-periodic point, so that $z^2 + z + c + 1 = 0$, we get $f(z)=z^2+c=-z-1$, so

$$
(f_c^2)'(z) = 4z(-z-1) = -4(z^2 + z) = 4(c+1).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

3. So $f_c(z) = z^2 + c$ has an attracting 2-cycle if $|4(c+1)| < 1$. If we write $c = a + bi$ and square, this means

$$
(a+1)^2+b^2<\left(\frac{1}{4}\right)^2,
$$

which means c is inside the circle of radius $1/4$ centered at -1 :

KORKARYKERKER POLO

Another Reminder of The Mandelbrot Set

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Periods of Some Other Bulbs

The 3-bulb

イロト イ部 トイ君 トイ君 トッ君 299

A 4-bulb

イロト イ部 トイ君 トイ君 トッ 君 290

A 6-bulb

イロト イ団 トイミト イミト 290 重

Moving Right out of the Cardioid: $f_c(z) = z^2 + c$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Moving Left out of the Cardioid: $f_c(z) = z^2 + c$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 299

Julia Sets for Some Specific Parameters

A Closeup of M near $c = -1.755$

メロトメ 御 トメ 差 トメ 差 トッ 差 299

The Airplane Julia Set: $c \approx -1.755$

Comparing Julia Sets to the Mandelbrot Set

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

(Tan's Theorem, 1990)

Mandelbrot's Picture of the Mandelbrot Set

250

Annals New York Academy of Sciences

FIGURE 1. Complex plane map of the
$$
\lambda
$$
-domain *Q*. The real axis of the λ -plane points up from $\lambda = 1$. The center of the circle is $\lambda = 2$ and the tip of the whole is $\lambda = 4$.

1. the remainder of O being symmetric to this figure with respect to the line $Re(\lambda) = 1$

A striking fact, which I think is new, becomes apparent here: FIGURE I is made of several disconnected portions, as follows.

The Domain of Confluence J. and Its Fractal Boundary

The most visible feature of FIGURE 1 is the large connected domain $\mathcal L$ surrounding $\lambda = 2$. This \angle splits into a sequence of subdomains one can introduce in successive stages

$$
g_{\lambda}(z)=\lambda z(1-z)
$$

"A striking fact, which I think is new, becomes apparent here: Figure 1 is made of several disconnected portions, as follows."

KORK EXTERNE PROVIDE