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The Complex Plane

C={x+iy:x,y eR}={re :r,0 c R}
where re® = (rcosf) 4 i(rsinf).

y

el x+iy = re'?

If z=x+iy = re’ € C, we say:
> x = Rez is the real part of z,
» y = Imz is the imaginary part of z,

» r=|z| = \/x?+ y? is the modulus of z,
» 0 = arg z is the argument of z.



Arithmetic in C

Addition:
Vector-style: ‘21 + 20 = (x1 +x2) + i(y1 + y2) ‘

AN

Multiplication:
Multiply moduli (lengths); add arguments (angles):

212y = (x1x2 — y1y2) + i(xays + xoy1) = rirpe’(®1702)
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The Riemann Sphere

The “Riemann sphere” is the set

C=CuU{cc}.

0

Think of C as the surface of a sphere, so points with large absolute
value are ‘close to 00.”

Example: 1000, —1000, 1000/, —1000;/ are all very close to each
other in C, even though they are very far apart in C.



Dynamics of Polynomials

Let f(z) be a polynomial of degree d > 2. So
f:C—C
Write
fi(z) = f(2), f2(z) = f o f(2),
f(z) fofof(z), etc.

Example. f(z) = z2. Then f2(z) = z*, f3(z) = 28, f*(z) = 2*°,
and in general, f"(z) = z(*").

Example. f(z) = z?> + 1. Then
> fA(2) = (2 + 1) +1=2*+222+2,
> 3(2) = (2* +222 +2)? +1 =28 +42° + 82* + 82% + 5,
> £7(z) = z(®") + big mess.



Periodic Points

Definition
A fixed point of f is a point zy € C such that f(z) = z.

Example. If f(z) = 22, then 0, 1, and oo are fixed points of f.

(And that's it, since any fixed point besides oo must satisfy
f(z) = z, which means z2 — z = 0.)

Definition
More generally, a periodic point of f of period n > 1 (a.k.a an
n-periodic point) is a point zp € C such that f"(z) = z.

The smallest positive integer n such that f"(z) = z is the
(exact) period of z.



2-Periodic Points of z2

satisfies w3 = 1.

Example. w = ¢2™/3 = 12,\@

As a result, w is a 2-periodic point of f(z) = z2:

—1—i\/§, P

We see f(w) = w? = *™/3 = 5

(W) = w* =w.

We say {w,w?} is a 2-cycle.

To find them: Solving f2(z) = z gives z* = z,
ie,[z=occor] z(z—1)(z2+2z+1)=0,

e, z=00,0,1,w,w?.



Some Periodic Points of z2 — 1

Example. If f(z) = z2 — 1, then the fixed points are co and the

1++5

roots of z2 — z — 1 = 0, which means oo, >

To find the 2-periodic points, we solve f2(z) = z:
(2 -12-1=2z

that is, z* — 222 — z = 0, which factors as (22 —z —1)(z2 +z) = 0.

Discard z? — z — 1 (those were fixed points, not 2-periodic points),
and the only 2-periodic points are 0 and —1.

Sure enough, f(0) = —1 and f(—1) = 0. So {0, —1} is a 2-cycle.



Classifying Periodic Points

Consider f(z) = z? near the fixed points at 0 and 1.

For z near 0 (say, |z| < 1), then f(z) is even closer to 0.
(le., [f(2)] <lz].)

For z near 1 (say, |z— 1| < 1/2), then f(z) is farther away from 1.
(le, |f(z) =1 >|z—1].)

What'’s going on?
More generally, if f(a) = a, let A = f/(a). The Taylor series is:

f(z)=a+MNz—a)+a(z—a)P +a(z—a)+--
So for z close to a (i.e., |z — a| small):

f(z) —am Az —a).



Multipliers of Periodic Points

Definition
Let f be a polynomial, and let a € C be a periodic point of exact
period n > 1. The multiplier of a is

A= (F)(a)
= (Fofo-of)(a)
= [F(@)]- [F(F@D] - [F (P [F (2 @)

If |A\| < 1, we say a is attracting.
If |A\| > 1, we say a is repelling.

If |\| =1, we say a is indifferent.

Recall: For z close to a, |f"(z) — a| = |A| |z — al.



Examples

Example. For f(z) = z2,

0 is an attracting fixed point (since f/(0) =0, and |0| < 1),
and
1 is a repelling fixed point (since f'(1) = 2, and [2| > 1).

(Note: oo is also attracting, for any polynomial of degree > 2.)

Example. For f(z) = z2 — 1,

{0, —1} is an attracting 2-cycle,

because f'(0) = 0 and f'(—1) = -2,

so that (f2)/(0) = (f?)'(-1) =0-(-2) = 0.



Fatou and Julia Sets

Definition
Let f be a polyomial. The Fatou set F of f is

{z € C :thereisadisk D> z
s.t. if wi,ws € D, then
Vn>1, f"(wy) is close to f"(w2)}

The complement is the Julia set 7 = C < F.

Fact: All attracting periodic points are in the Fatou set, and
all repelling periodic points are in the Julia set.



Example: The Fatou and Julia Sets of z2

Example. f(z) = z%:

If |z| < 1, then f"(w) — O for every nearby w. So
{zeC:|z| <1} C F.

If |z| > 1, then f"(w) — oo for every nearby w. So
{zeC:|z| >1} C F.

If |z| =1, then: uh-oh.

So J is the unit circle:



The Julia Set of f(z) =z + 1



The Julia Set of f(z) = 2% — 1

(“The Basilica")



The Julia Set of f(z) = z% + (.123 + .745/)

(Douady's “Rabbit")



The Julia Sets of f(z) = z? + ¢ for Various ¢

c=-.5 c=—-5+3/ | c=-1+.16/
c=—.12+ .765/ c=1 c=-3+4+.71i
c=—775+4+.177i | ¢ = .44 + .29/ | ¢ = —.513 — 579/




Julia Sets of Some Cubic Polynomials




More Facts about Complex Dynamics

1. Points in F map to F,
and points in J map to J.

2. If f(z) has an attracting periodic point a, then there must be
a critical point b whose iterates "(b) are attracted to a.

3. (Special case of (2) for quadratic polynomials):
Suppose f-(z) = z° + c.
Then besides the attracting fixed point at oo,
f- has at most one attracting periodic cycle in C.
(fc has only one critical point, at z = 0.)

From now on, let's only consider f.(z) = z% + c.



The orbit of the critical point 0

Note: If f.(z) = z% + c has an attracting cycle (besides 00), then
it attracts 0, so
{f7(0): n>1}

is a bounded set.

Note: Lots of other f. have this property, too.

Example: f 5(z) =2z> —2has 0+ —2+5 2+ 2

Example: f;(z) =z +ihas0 i+ i—1+ —j+si—1

BUT: f1(z) = z% + 1 does not, since:
012520677+ ---



The Mandelbrot Set

Recall f.(z) = z% + c.

Definition
The Mandelbrot set is

M={ceC:{f(0):n>1}is bounded}.

(Benoit Mandelbrot, 1980)

Facts:
1. The Julia set J of f. is connected if and only if c € M.
2. Forevery ce M, |c| < 2.

3. M is connected.
(Hard Theorem: Douady and Hubbard, 1984.)



The Mandelbrot Set




Zooming in: =22 < x<0.8and -12<y <12

Using Mandebrot viewer/explorer at:
http://math.hws.edu/eck/js/mandelbrot/MB.html

(credits: David Eck at Hobart and William Smith)



—.132 < x < —.032 and .608 < y < .684  (30X)




—.0572 < x < —.0477 and .6483 < y < .6554




—.04985 < x < —.04958 and .65044 < y < .65064
(11000X)




Two Big Open Questions

1. Let
H = {c € C: . has an attracting cycle in C}.
Big Conjecture: 7 is dense in M.

The density of H would be implied by another
Big Conjecture: M is locally connected.

2. What is the area of the boundary OM?
[Shishikura (1994) showed M has Hausdorff dimension 2.]



—.04985 < x < —.04958 and .65044 < y < .65064
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Where are the c¢'s with Attracting Fixed Points?

Let's compute, for f-(z) = z? + ¢, the set:

Hi = {c € C: f. has an attracting fixed point}.

1. The fixed points are roots of z2 — z 4+ ¢ = 0. That means

_1j:\/1—4c
_f.

V4

, 1 ,
Write 1 — 4c = re'?, so that ¢ = Z(l —re'?). (r >0.) So

z= %(1 + \/re?/?).

2. To be attracting, one must have |f/(z)| < 1. Thatis, |2z| < 1,

which is to say .
11+ /re”?| < 1.

(for at least one choice of + or —.)



3. Writing e’ = cosf + isin 6, 11+ /re/?| <1 means
0 .~ . 0
1> li\ﬁcosi i/\ﬁsmi.
Squaring, that is
0> .0 0
1> lj:\ﬁcosi + rsin EzliQﬁcos§+r,

so that o
r < F2+/rcos >

for at least one of — or +.



4. Squaring r < F2,/rcos(0/2) gives
2 20
r* < 4rcos 5= 2r(1 4+ cosf),

or in other words, r < 2(1 + cos#).

That means re’? is inside the cardioid r = 2(1 4 cos#).

1 ; .
And that means ¢ = Z(l — re') is inside this cardioid:

NIENR




Reminder of The Mandelbrot Set
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Where are the c¢'s with Attracting 2-cycles?

Let's compute

Ho = {c € C: f. has an attracting 2-cycle}.

1. f2(z) = z* +2cz® + (c? + ¢), so

C

f2(2)—z=z2*+2c2? —z+(?+¢) = (22— z4 ) (22 + z+(c+1)).

Cc

The first factor is the fixed points, so we discard it.
Thus, the 2-periodic points are the two roots of

Z+z4+(c+1)=0.



2. We compute

(f2)(2) = 423 + 4cz = 4zf(2).

c

If z is a 2-periodic point, so that z2 +z+c+1=0,
we get f(z) =z +c=-z-1,s0

(72)(2) = 42(~z — 1) = —4(22 + z) = 4(c + 1).



3. So f.(z) = z% + ¢ has an attracting 2-cycle if [4(c +1)| < 1
If we write ¢ = a + bi and square, this means

1 2
(a+ 12+ b < (Z) :

which means c is inside the circle of radius 1/4 centered at —1:

DA



Another Reminder of The Mandelbrot Set
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Periods of Some Other Bulbs




The 3-bulb




A 4-bulb




A 6-bulb







Moving Right out of the Cardioid: f.(z) = 2> + ¢
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Moving Left out of the Cardioid: f.(z) = z° + ¢

v *u\\) w o
c=-5 c=-—-.75 c=-1 c=-1.25
c~ —1.31 c~ —1.37 c~ —1.38 c~ —1.40




Julia Sets for Some Specific Parameters




A Closeup of M near ¢ = —1.755




The Airplane Julia Set: ¢ =~ —1.755
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Comparing Julia Sets to the Mandelbrot Set

. F e e

K b

RV

(Tan's Theorem, 1990)




Mandelbrot's Picture of the Mandelbrot Set

250 Annals New York Academy of Sciences

g\(z) =Az(1—z)

» .
L4 4
g v “A striking fact, which | think
' ® is new, becomes apparent here:
‘1 ;" FIGURE 1 is made of several dis-

connected portions, as follows.”




