Arboreal Galois groups with colliding critical points

*Rob Benedetto, Will DeGroot, Anna Dietrich, Xinyu Ni, Jesse Seid, Annie Wei, Min Winton

Amherst College

Friday, January 6, 2023

Notation

- K is a field, usually a number field
- $ightharpoonup \overline{K}$ is the algebraic closure of K
- $f \in K(z)$ is a rational function of degree $d \ge 2$
- $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n}$ is the *n*-th iterate of f
- $ightharpoonup f^{-n}(x_0)$ is the set of roots of $f^n(z)=x_0$.

Goal: Given $x_0 \in \mathbb{P}^1(K) = K \cup \{\infty\}$, to understand the action of Galois on the backward orbit

$$\operatorname{Orb}_f^-(x_0) := \{x_0\} \cup f^{-1}(x_0) \cup f^{-2}(x_0) \cup \cdots$$

A Tower of Extension Fields

For each $n \ge 0$, let $K_n = K(f^{-n}(x_0))$ and $G_n = Gal(K_n/K)$.

We call the groups G_n arboreal Galois groups.

Note $G_n \subseteq \operatorname{Aut}(T_{d,n})$, where $T_{d,n}$ is a d-ary rooted tree of n levels.

How big is G_n in Aut $(T_{d,n})$?

Recall: $K_n = K(f^{-n}(x_0))$ and $G_n = Gal(K_n/K)$.

 $T_{d,n}$ is a d-ary rooted tree with n levels, so $G_n \subseteq \operatorname{Aut}(T_{d,n})$.

Expectation:

[Aut($T_{d,n}$): G_n] is bounded as $n \to \infty$, **unless** there is an obvious reason not.

One such "obvious" reason is that *f* is **PCF**:

Definition

f(z) is **postcritically finite**, or **PCF**, if every critical point of f has finite forward orbit.

Colliding Critical Points

Another "obvious" reason $[Aut(T_{d,n}): G_n]$ could be unbounded:

Definition

Let $f \in K(z)$ be a separable map, let $\gamma_1, \gamma_2 \in \mathbb{P}^1(\overline{K})$ be critical points of f, and let $\ell \geq 1$ be an integer.

We say that γ_1 and γ_2 collide (at ℓ iterations) if

$$f^{\ell}(\gamma_1) = f^{\ell}(\gamma_2)$$
, but $f^i(\gamma_1) \neq f^i(\gamma_2)$ for $0 \leq i < \ell$.

$$\gamma_1 \longmapsto f(\gamma_1) \longmapsto \cdots \longmapsto f^{\ell-1}(\gamma_1) \longrightarrow f^{\ell}(\gamma_1) \longmapsto \cdots$$

$$\gamma_2 \longmapsto f(\gamma_2) \longmapsto \cdots \longmapsto f^{\ell-1}(\gamma_2) \longmapsto \cdots$$

Pink (2013) observed that if f has only two critical points, and if these critical points collide at $\ell \geq 1$ iterations, then $[\operatorname{Aut}(T_{d,n}):G_n]$ is unbounded.

Iterated Discriminants

Recall if $P(z) = a_d z^d + \cdots + a_0 = a_d \prod_{i=1}^d (z - \alpha_i) \in K[z]$, the discriminant of P is

$$\Delta(P) = a_d^{2d-2} \prod_{i < j} (\alpha_i - \alpha_j)^2 \in K.$$

Theorem (Jones, Manes, 2012; variant)

Let $f(z) \in K(z)$ of degree $d \ge 2$.

Let $\gamma_1, \ldots, \gamma_{2d-2} \in \mathbb{P}^1(\overline{K})$ be the critical points of f.

Write $f^n(z) = \frac{p_n(z)}{q_n(z)}$ with $p_n, q_n \in K[z]$ relatively prime.

For any root point x_0 , let $\Delta_n := \Delta(p_n - x_0q_n)$.

Then for each $n \ge 1$, we have

$$\Delta_n = c_n \, \Delta_{n-1}^d \prod_{i=1}^{2d-2} (f^n(\gamma_i) - x_0).$$

Here, c_n is a fudge factor involving various lead coefficients, resultants, etc.

Quadratic rational maps with colliding critical points

[Assume char $K \neq 2$.]

Fix $\ell \geq 2$. Let $f \in K(z)$ with deg f = 2 and such that the two critical points γ_1, γ_2 collide at the ℓ -th iteration.

(The moduli space of such maps is one-dimensional.)

Then (by iterated discriminant formula), any $\sigma \in G_n = \operatorname{Gal}(K_n/K)$ acts as an **even permutation** on the 2^{ℓ} points of $f^{-\ell}(x_0)$.

But this parity restriction applies ℓ levels above **every** node of $T_{2,n}$.

Let $M_{\ell,n}$ be the subgroup of $\operatorname{Aut}(T_{2,n})$ carved out by this (repeated) parity restriction.

So $G_n \subseteq M_{\ell,n}$.

Special Case: d=2 and $\ell=2$

$$G_n = \mathsf{Gal}(K_n/K) \subseteq M_{\ell,n} \subseteq \mathsf{Aut}(T_{2,n})$$

 $M_{\ell,n}$ is the subgroup of Aut $(T_{2,n})$ determined by:

For each node y of the tree, each $\sigma \in M_{\ell,n}$ acts as an even permutation of the 2^{ℓ} nodes lying ℓ levels above y.

Odd Cousins (at level $\ell \geq 2$). [Joint with Anna Dietrich]

Fix a node y in the tree. We say σ

- ightharpoonup acts *positively* above *y* if σ is even above both α and β .
- ightharpoonup acts *negatively* above y if σ is odd above both α and β .

Odd Cousins Maps

Definition

For $\sigma \in M_{\ell,n}$, if σ acts negatively above an odd number of nodes at level $n-\ell$, we say σ is an **odd-cousins map** at level n.

Colliding critical points for deg(f) = 2

$$K_n = K(f^{-n}(x_0)), \quad G_n = Gal(K_n/K), \quad M_{\ell,n} \subseteq Aut(T_{2,n})$$

Theorem (RB, Dietrich, 2023*)

Let K be a field with char $K \neq 2$, let $x_0 \in \mathbb{P}^1(K)$, and let $f \in K(z)$ with $\deg(f) = 2$ such that the two critical points of f collide at the ℓ -th iterate, where $\ell \geq 2$.

Assume x_0 is not periodic and not postcritical.

There are $\kappa_n \in K$, given by explicit expressions involving f and x_0 , such that the following are equivalent:

- 1. $G_n = M_{\ell,n}$ for all $n \ge 1$.
- 2. No product $\kappa_{i_1} \cdots \kappa_{i_m}$ (for $i_1 < \cdots < i_m$) is a square in K.

Idea: For $n \ge \ell$, κ_n is a square in K if and only if there are no odd cousins maps in $Gal(K_n/K)$.

Cubic polynomials with colliding critical points [REU 2022]

Let $f \in K[z]$ with deg f = 3 and such that the two critical points γ_1, γ_2 collide at the 2nd iteration. (We fix $\ell = 2$.)

The moduli space of such maps is one-dimensional:

$$f(z) = Az^3 + Bz + 1$$
, with $A = \frac{1}{81}(4B^3 - 27B)$

Fix $x_0 \in K$ not periodic and not in the forward orbit of the critical points $\gamma_1, \gamma_2 = \pm \sqrt{-B/(3A)}$

This time, the discriminant formula for $\Delta_n := \Delta(f^n - x_0)$ gives:

$$\Delta_n = (\text{square in } K) \cdot (-3) \cdot \Delta_{n-1} \text{ for } n \geq \ell = 2.$$

So any $\sigma \in G_n = \operatorname{Gal}(K_n/K)$ acts with same parity at every even level of the tree, and same parity at every odd level.

So $G_n \subseteq Q_n$, the subgroup of Aut $(T_{3,n})$ carved out by this parity restriction, above **every** node of the tree.

Building towards $Aut(T_{3,2})$

Recall $f(z) = Az^3 + Bz + 1 \in K[z]$, with root point $x_0 \in K$.

It's not hard to set conditions on K, A, B, x_0 to guarantee that

- ▶ $f^n(z) x_0$ is irreducible over K for all $n \ge 1$,
- $\blacktriangleright \ [K(\sqrt{\Delta_1},\sqrt{-3}):K]=4$

which gives $|G_2| \ge \frac{1}{4} \cdot 6^4$, vs. $|Q_2| = |Aut(T_{3,2})| = 6^4$:

BUT G_2 is not necessarily all of $Q_2 = Aut(T_{3,2})$

A proper subgroup of $Aut(T_{3,2})$

$$H = \left\{ \left(\lambda, (\tau_1, \tau_2, \tau_3) \right) \mid \operatorname{sgn}(\tau_1) = \operatorname{sgn}(\tau_2) = \operatorname{sgn}(\tau_3) \right\}$$

Four conjugate subgroups: $H_1 = H, H_2, H_3, H_4$ of Aut $(T_{3,2})$.

 H_1 fixes $\delta_1 := \beta_1\beta_2 + \beta_1\beta_3 + \beta_2\beta_3$, where $\beta_i = \sqrt{\Delta(f - \alpha_i)}$ So we need $g(y) = (y - \delta_1)(y - \delta_2)(y - \delta_3)(y - \delta_4) \in K[y]$ to have no roots in K.

Levels 3 and higher

One can specify further local conditions to guarantee that g has no roots in K, (so $G_2 \nsubseteq H_i$), and hence that $G_2 = Q_2$.

But even if we also assume the same over each of the three subtrees $T_{3,2}$ based at α_1 , α_2 , α_3 ,

there's **another quartic obstacle** to G_3 being all of Q_3 .

That (more complicated) quartic obstacle is similarly surmountable.

And then — no more further conditions are needed!

The Theorem

Let K be a number field, let $f(z) = Az^3 + Bz + 1 \in K[z]$ with $A = \frac{1}{81}(4B^3 - 27B)$, and let $x_0 \in K$. Let $G_n = \text{Gal}(K(f^{-n}(x_0)/K)$

Condition (†) on (K, x_0) : There are primes $\mathfrak{p}, \mathfrak{q}, \mathfrak{r}$ of K such that

- 1. $v_p(A) = v_p(B) = 0$ and $v_p(x_0) = -1$,
- 2. $6|v_{\mathfrak{q}}(A)=v_{\mathfrak{p}}(B)$, with $-5v_{\mathfrak{q}}(A)\leq v_{\mathfrak{q}}(x_0)<0$ and $v_{\mathfrak{q}}(x_0)\equiv \pm 1\pmod 6$,
- 3. $v_{\mathfrak{r}}(A) = v_{\mathfrak{r}}(B) > 0 > v_{\mathfrak{r}}(x_0)$, with $v_{\mathfrak{r}}(a) \not\equiv v_{\mathfrak{r}}(x_0) \pmod{3}$ and $4 \nmid v_{\mathfrak{r}}(x_0)$.
- 4. $[K(\sqrt{\Delta(f-x_0)}, \sqrt{-3}):K]=4$

Theorem (RB, DeGroot, Ni, Seid, Wei, Winton, 2023)

With notation as above,

- 1. If (†) holds for (K, x_0) , then it holds for $(K(\alpha), \alpha)$ for each $n \ge 1$ and each $\alpha \in f^{-n}(x_0)$.
- 2. If (†) holds for (K, x_0) , then $G_n = Q_n$ for all $n \ge 1$.

Summary: Maps with 2 critical points colliding at iterate ℓ

Quadratic Rational (with Anna Dietrich):

- ▶ Description of group $M_{\ell,n} \subseteq \operatorname{Aut}(T_{2,n})$ with $G_n \subseteq M_{\ell,n}$ for all $n \ge 1$.
- Sufficient condition to force $G_n = M_{\ell,n}$ for all $n \ge 1$. (Infinitely many " κ_n is not a square in K" conditions.)

Cubic Polynomial (with Will DeGroot, Xinyu Ni, Jesse Seid, Annie Wei, and Samantha (Min) Winton): For $\ell = 2$ only:

- ▶ Description of group $Q_n \subseteq \operatorname{Aut}(T_{3,n})$ with $G_n \subseteq Q_n$ for all $n \ge 1$.
- Sufficient condition to force $G_n = Q_n$ for all $n \ge 1$. (Finite condition: existence of primes with certain properties, inherited up the tree.)