Hyperbolicity and J-stability in Non-archimedean Dynamics

*Rob Benedetto, Amherst College
Junghun Lee, Tokyo Institute of Technology

Current Trends in Arithmetic Dynamics, Virtual JMM
Saturday, January 9, 2021
Hyperbolicity in Complex Dynamics

\(f \in \mathbb{C}(z) \) has spherical derivative \(f^\#(z) := |f'(z)| \cdot \frac{1 + |z|^2}{1 + |f(z)|^2} \)

Theorem

Let \(f \in \mathbb{C}(z) \) with Julia set \(J_f \). The following are equivalent:

1. There exists \(\sigma : J_f \to (0, \infty) \) continuous such that
 \[f^\#(z)\sigma(f(z)) > \sigma(z) \text{ for all } z \in J_f. \]
2. There exist \(C > 0 \) and \(\lambda > 1 \) such that
 \[(f^n)^\#(z) \geq C\lambda^n \text{ for all } z \in J_f \text{ and } n \geq 1. \]
3. \(J_f \) is disjoint from the closure of the postcritical set of \(f \).
4. All critical points of \(f \) are attracted to attracting cycles.

Definition

A rational function \(f \in \mathbb{C}(z) \) satisfying any (and hence all) of the above properties is said to be hyperbolic.
J-stability in Complex Dynamics

Let $\text{Rat}_d(\mathbb{C})$ denote the space of rational functions of degree d.

Definition

Let $f \in \text{Rat}_d(\mathbb{C})$ with Julia set \mathcal{J}_f.

1. $g \in \text{Rat}_d(\mathbb{C})$ is **J-equivalent** to f if there is a homeomorphism $h : \mathcal{J}_f \rightarrow \mathcal{J}_g$ such that $h \circ f = g \circ h$.

2. f is **J-stable** if there is a neighborhood $W \subseteq \text{Rat}_d(\mathbb{C})$ of f such that every $g \in W$ is J-equivalent to f.

(There’s also a continuity condition for J-stability, but never mind.)

Theorem (Mañé, Sad, Sullivan 1983)

(At least for one-parameter families in $\text{Rat}_d(\mathbb{C})$),

If $f \in \mathbb{C}(z)$ is hyperbolic, then f is J-stable.

(Recall: hyperbolic means expanding on the Julia set.)
The Berkovich Projective Line

\(\mathbb{C}_v \): a complete, algebraically closed non-archimedean field with absolute value \(|\cdot| \), and with char \(\mathbb{C}_v = 0 \).

[E.g. \(p \)-adic field \(\mathbb{C}_p \) or Puiseux series field \(\overline{\mathbb{C}}((t)) \).]

\(f \in \mathbb{C}_v(z) \) acts on \(\mathbb{P}^1(\mathbb{C}_v) \), but even better, \(f \) acts on the Berkovich line \(\mathbb{P}^1_{\text{an}} \), which:

- contains \(\mathbb{P}^1(\mathbb{C}_v) \) as a subspace (“Type I points”)
- contains one point \(\zeta(a, r) \) for each closed disk \(\overline{D}(a, r) \subseteq \mathbb{C}_v \) (“Type II and type III points”)
- is compact and Hausdorff

Each disk \(D(a, r) \) or \(\overline{D}(a, r) \) in \(\mathbb{C}_v \) has a natural extension to \(D_{\text{an}}(a, r) \) or \(\overline{D}_{\text{an}}(a, r) \) in \(\mathbb{P}^1_{\text{an}} \).
Rational Functions Acting on \mathbb{P}^1_{an}

For $f \in \mathbb{C}_v(z)$ of degree $d \geq 2$,

- f maps \mathbb{P}^1_{an} continuously onto itself.

- for $x \in \mathbb{P}^1(\mathbb{C}_v)$ of type I, $f(x)$ is the usual $f(x) \in \mathbb{P}^1(\mathbb{C}_v)$.

- If $f(D(a, r)) = D(b, s)$, then $f(\zeta(a, r)) = \zeta(b, s)$.
Non-archimedean Dynamics

$f \in \mathbb{C}_v(z)$ has an associated

- (Berkovich) Fatou set $\mathcal{F}_{an,f}$, and
- (Berkovich) Julia set $\mathcal{J}_{an,f} := \mathbb{P}^1_{an} \setminus \mathcal{F}_{an,f}$

contained in \mathbb{P}^1_{an}, such that:

- $\mathcal{F}_{an,f}$ is open in \mathbb{P}^1_{an}, and $\mathcal{J}_{an,f}$ is closed (and hence compact).
- $f^{-1}(\mathcal{F}_{an,f}) = \mathcal{F}_{an,f}$ and $f^{-1}(\mathcal{J}_{an,f}) = \mathcal{J}_{an,f}$.
- Both $\mathcal{F}_{an,f}$ and $\mathcal{J}_{an,f}$ are nonempty.
- $\mathcal{J}_{an,f}$ is the smallest nonempty closed subset of \mathbb{P}^1_{an} that is invariant under f.

Fact: f has good reduction iff $\mathcal{J}_{an,f} = \{\zeta(0,1)\}$.
Two Previous Non-Archimedean J-Stability Results

Theorem (T. Silverman, 2017)

Let \(\{f_x\}_{x \in U} \) be a one-parameter analytic family for \(U \subseteq \mathbb{A}_{an}^1 \) connected and open. Suppose

- \(f_y \) has a type I repelling fixed point for some \(y \in U \), and
- for all \(x \in U \), \(f_x \) has no type I repelling periodic points of higher multiplicity, and no unstably indifferent periodic points.

Then the family \(\{f_x\} \) is J-stable on \(U \).

Theorem (J. Lee, 2018)

Assume \(f \in \text{Rat}_d(\mathbb{C}_v) \) satisfies

- \(\mathcal{J}_{an,f} \cap \mathbb{P}^1(\mathbb{C}_v) \neq \emptyset \), and
- there exist \(C > 0 \) and \(\lambda > 1 \) such that
 \[
 (f^n)\#(x) \geq C\lambda^n \text{ for all } x \in \mathcal{J}_{an,f} \cap \mathbb{P}^1(\mathbb{C}_v) \text{ and } n \geq 1.
 \]

Then \(f \) is J-stable, at least on \(\mathcal{J}_{an,f} \cap \mathbb{P}^1(\mathbb{C}_v) \).
A Berkovich Spherical Derivative

The **diameter** of $\zeta \in \mathbb{P}^1_{\text{an}}$ is:

- If $\zeta = x \in \mathbb{C}_v$ is of Type I, then $\text{diam}(\zeta) = 0$
- If $\zeta = \zeta(a, r)$ is of Type II or III, then $\text{diam}(\zeta) = r$.

Define the **spherical derivative** of f to be

$$f^\sharp(x) := \left|f'(x)\right| \cdot \frac{\max\{1, |x|^2\}}{\max\{1, |f(x)|^2\}} \quad \text{if } x \in \mathbb{P}^1(\mathbb{C}_v),$$

and

$$f^\sharp(\zeta) := \frac{\text{diam}(f(\zeta))}{\text{diam}(\zeta)} \cdot \frac{\max\{1, |\zeta|^2\}}{\max\{1, |f(\zeta)|^2\}} \quad \text{if } \zeta \in \mathbb{P}^1_{\text{an}} \setminus \mathbb{P}^1(\mathbb{C}_v).$$
Wait, about that extension of the spherical derivative...

From previous slide: for \(\zeta \in \mathbb{P}^1_{an} \),

\[
f^{\sharp}(\zeta) = \begin{cases}
|f'(\zeta)| \cdot \frac{\max\{1,|\zeta|^2\}}{\max\{1,|f(\zeta)|^2\}} & \text{if } \zeta \in \mathbb{P}^1(\mathbb{C}_v), \\
\frac{\text{diam}(f(\zeta))}{\text{diam}(\zeta)} \cdot \frac{\max\{1,|\zeta|^2\}}{\max\{1,|f(\zeta)|^2\}} & \text{otherwise.}
\end{cases}
\]

Why not \(f^{\sharp}(\zeta) \overset{?}{=} \|f'\|_{\zeta} \cdot \frac{\max\{1,\|z\|^2_{\zeta}\}}{\max\{1,\|f(z)\|^2_{\zeta}\}} \)?

Example. \(f(z) = z^p \), where \(p \geq 2 \) is the residue characteristic of \(\mathbb{C}_v \).

\(f \) has good reduction, so \(\mathcal{J}_{an,f} = \{\zeta(0,1)\} \).

Then \(\|f'\|_{\zeta} \cdot \frac{\max\{1,\|z\|^2_{\zeta}\}}{\max\{1,\|f(z)\|^2_{\zeta}\}} = |p| < 1 \) for \(\zeta \in \mathcal{J}_{an,f} \).

So \(f \) would be *contracting* on the Julia set by that definition!
A Fairly General Example

Fix $m \geq 2$ with $|m| = 1$, and fix $c \in \mathbb{C}_v$ with $0 < |c| < 1$. Let

$$f(z) := cz^{m+1} - z^m + z \in \mathbb{C}_v[z].$$

Then both $c^{-1} \in \mathbb{C}_v$ and $\zeta(0, 1)$ are fixed points in $\mathcal{J}_{an,f}$.

Define a sequence $\{a_n\}_{n \geq 0}$ by $a_0 := c^{-1}$, and

$$f(a_{n+1}) = a_n \quad \text{and} \quad |a_n| = |c|^{-1/m^n} \quad \text{for every } n \geq 0.$$

A simple computation shows $(f^i)^\sharp(a_n) < |c|^{-3}$ for every $0 \leq i \leq n$, even though $a_n \in \mathcal{J}_{an,f}$.

Also, $\zeta = \zeta(0, 1)$ has $(f^n)^\sharp(\zeta) = 1$ for all $n \geq 0$.

Moral

Even if we care only about the type I points of the Julia set, any strictly expansive condition like:

1. There exists $\sigma : \mathcal{J}_f \to (0, \infty)$ continuous such that $f^\#(z)\sigma(f(z)) > \sigma(z)$ for all $z \in \mathcal{J}_{\text{an},f}$.

2. There exist $C > 0$ and $\lambda > 1$ such that $(f^n)^\#(z) \geq C\lambda^n$ for all $z \in \mathcal{J}_{\text{an},f}$ and $n \geq 1$.

3. All critical points of f are attracted to attracting cycles.

is TOO RESTRICTIVE in non-archimedean dynamics.
A Stability Theorem

Theorem (B-Lee)

Let \(f \in \mathbb{C}_v(z) \) with \(d := \deg f \geq 2 \). Suppose there exists \(\delta > 0 \) such that

\[
(f^n)_{\sharp}(\zeta) \geq \delta \quad \text{for all } \zeta \in J_{\text{an},f} \text{ and } n \geq 0.
\]

Then \(f \) is \(J \)-stable. More precisely, there exist:

- a neighborhood \(W \subseteq \text{Rat}_d(\mathbb{C}_v) \) of \(f \) and
- an open set \(U \subseteq \mathbb{P}^1_{\text{an}} \) containing \(J_{\text{an},f} \cap \mathbb{P}^1(\mathbb{C}_v) \)

so that for each \(g \in W \), there is a homeomorphism \(h : U \cup J_{\text{an},f} \to U \cup J_{\text{an},f} \) for which

1. \(h \) is an isometry on the type I points \(U \cap \mathbb{P}^1(\mathbb{C}_v) \) of \(U \),
2. \(h \) is the identity map on \(J_{\text{an},f} \setminus U \),
3. \(h \circ f = g \circ h \), and
4. \(h(J_{\text{an},f}) = J_{\text{an},g} \).
Sketch of Proof: Setup

Change coordinates so that $\mathcal{J}_{an,f} \subseteq \overline{D}_{an}(0, 1)$.
Pick $\varepsilon > 0$ so that f is injective on $D_{an}(a, \varepsilon)$ for every $a \in \mathbb{C}_v$ for which $D_{an}(a, \varepsilon) \cap \mathcal{J}_{an,f} \neq \emptyset$.

Without loss of generality, assume $\delta, \varepsilon < 1$.

For each $\zeta \in \mathcal{J}_{an,f}$, define

$$\sigma(\zeta) := \inf \{(f^n)^{\sharp}(\zeta) \mid n \geq 0\}.$$

Then for all $\zeta \in \mathcal{J}_{an,f}$,

- $\delta \leq \sigma(\zeta) \leq 1$
- $f^{\sharp}(\zeta)\sigma(f(\zeta)) \geq \sigma(\zeta)$
Sketch of Proof: Domain of the Conjugacy

For $\zeta \in J_{an,f}$, recall $\sigma(\zeta) := \inf \{(f^n)^{\#}(\zeta) \mid n \geq 0\}$. Define

$$\nu(\zeta) := \frac{\delta^2 \varepsilon}{\sigma(\zeta)}$$

and

$$J_{an,f}^0 := \{\zeta \in J_{an,f} \mid \text{diam} (\zeta) < \nu(\zeta)\}$$

and

$$\Omega := \bigcup_{\zeta \in J_{an,f}^0} D_{an}(\zeta, \nu(\zeta))$$

Using $f^{\#}(\zeta)\sigma(f(\zeta)) \geq \sigma(\zeta)$, we can show $f^{-1}(\Omega) \subseteq \Omega$.

Let $U := f^{-1}(\Omega)$. The conjugacy h will map $U \cup J_{an,f}$ to itself, fixing all points of $J_{an,f} \setminus U$.
Lemma

There is an open neighborhood $W \subseteq \text{Rat}_d(\mathbb{C}_v)$ of f such that for all $g \in W$,

- $\mathcal{I}_{\text{an},g} \subseteq \overline{D}_\text{an}(0,1)$

- $|g(x) - f(x)| < \frac{\delta^2 \varepsilon}{2}$ for all $x \in f^{-1}(\overline{D}(0,1))$

Moreover, for every $g \in W$ and open disk $D \subseteq U := f^{-1}(\Omega)$,

g maps D bijectively onto $f(D)$.

In particular, g has a local inverse

$$G_D := (g|_D)^{-1} : f(D) \to D$$
Sketch of Proof: The Inductive Construction

\[
\cdots f^{-3}(\Omega) \xrightarrow{f} f^{-2}(\Omega) \xrightarrow{f} f^{-1}(\Omega) \xrightarrow{f} \Omega \\
\downarrow h_3 \quad \downarrow h_2 \quad \downarrow h_1 \quad \downarrow h_0 = \text{id} \\
\cdots g^{-3}(\Omega) \xrightarrow{g} g^{-2}(\Omega) \xrightarrow{g} g^{-1}(\Omega) \xrightarrow{g} \Omega
\]

On each open disk \(D \subseteq U := f^{-1}(\Omega) = g^{-1}(\Omega) \):

\[
f^{-n}(\Omega) \cap D \xrightarrow{f} f^{-(n-1)}(\Omega) \cap f(D) \\
\downarrow h_{n-1} \\
g^{-n}(\Omega) \cap D \xrightarrow{g} g^{-(n-1)}(\Omega) \cap f(D)
\]

Define \(h_n \) on \(f^{-n}(\Omega) \cap D \) by \(h_n := G_D \circ h_{n-1} \circ f \)
where \(G_D : f(D) \to D \) is the local inverse of \(g : D \to f(D) \).
Sketch of Proof: The Inductive Construction

\[\cdots f^{-3}(\Omega) \xrightarrow{f} f^{-2}(\Omega) \xrightarrow{f} f^{-1}(\Omega) \xrightarrow{f} \Omega \]
\[\downarrow h_3 \quad \downarrow h_2 \quad \downarrow h_1 \quad \downarrow h_0 = \text{id} \]
\[\cdots g^{-3}(\Omega) \xrightarrow{g} g^{-2}(\Omega) \xrightarrow{g} g^{-1}(\Omega) \xrightarrow{g} \Omega \]

On each open disk \(D \subseteq U := f^{-1}(\Omega) = g^{-1}(\Omega) \):

\[f^{-n}(\Omega) \cap D \xrightarrow{f} f^{-(n-1)}(\Omega) \cap f(D) \]
\[\downarrow h_n \quad \downarrow h_{n-1} \]
\[g^{-n}(\Omega) \cap D \xleftarrow{G_D} g^{-(n-1)}(\Omega) \cap f(D) \]

Define \(h_n \) on \(f^{-n}(\Omega) \cap D \) by \(h_n := G_D \circ h_{n-1} \circ f \)
where \(G_D : f(D) \to D \) is the local inverse of \(g : D \to f(D) \).
Finishing the Proof

\[\ldots f^{-3}(\Omega) \xrightarrow{f} f^{-2}(\Omega) \xrightarrow{f} f^{-1}(\Omega) \xrightarrow{f} \Omega \]
\[\downarrow h_3 \quad \downarrow h_2 \quad \downarrow h_1 \quad \downarrow h_0 = \text{id} \]
\[\ldots g^{-3}(\Omega) \xrightarrow{g} g^{-2}(\Omega) \xrightarrow{g} g^{-1}(\Omega) \xrightarrow{g} \Omega \]

There are many details to check, including:

- Each \(h_n \) is well-defined, a homeomorphism, and an isometry on \(\mathbb{P}^1(\mathbb{C}_v) \).

- \(\bigcap_{n \geq 0} f^{-n}(\Omega) = \mathcal{J}_{an,f} \cap \mathbb{P}^1(\mathbb{C}_v) \).

- The limit \(h := \lim h_n \) converges and is a homeomorphism.

- \(h \circ f = g \circ h \) on \(U \cup \mathcal{J}_{an,f} \), and \(h(\mathcal{J}_{an,f}) = \mathcal{J}_{an,g} \).
Theorem (B-Lee)

Let $f \in C_v(z)$ with $d := \deg f \geq 2$. Suppose there exists $\delta > 0$ such that

$$(f^n)^\sharp(\zeta) \geq \delta \text{ for all } \zeta \in J_{an,f} \text{ and } n \geq 0.$$

Then f is J-stable. More precisely, there exist:

1. a neighborhood $W \subseteq \text{Rat}_d(C_v)$ of f and
2. an open set $U \subseteq \mathbb{P}^1_{an}$ containing $J_{an,f} \cap \mathbb{P}^1(C_v)$

so that for each $g \in W$, there is a homeomorphism $h : U \cup J_{an,f} \to U \cup J_{an,f}$ for which

1. h is an isometry on the type I points $U \cap \mathbb{P}^1(C_v)$ of U,
2. h is the identity map on $J_{an,f} \setminus U$,
3. $h \circ f = g \circ h$, and
4. $h(J_{an,f}) = J_{an,g}$.

And now we see $U := f^{-1}(\Omega)$.