An Arithmetic Basilica

Faseeh Ahmad, Robert L. Benedetto*, Jen Cain, Greg Carroll, Lily Fang

Amherst College

Special Session on Arithmetic Dynamics AMS Meeting at U Hawaii, Friday, March 22, 2019

Notation

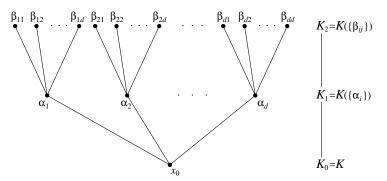
- K is a field, usually a number field
- $ightharpoonup \overline{K}$ is the algebraic closure of K
- ▶ $f \in K[z]$ is a polynomial of degree $d \ge 2$
- $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n}$ is the *n*-th iterate of f
- ► $f^{-n}(x_0) = (f^n)^{-1}(x_0)$ is the set of *n*-th preimages of x_0 under f. That is, the set of roots of $f^n(z) x_0 = 0$.

Goal: Given $x_0 \in K$, to understand the action of Galois on the backward orbit

$$\operatorname{Orb}_f^-(x_0) := \{x_0\} \cup f^{-1}(x_0) \cup f^{-2}(x_0) \cup \cdots$$

A Tower of Extension Fields

For each $n \ge 0$, let $K_n = K(f^{-n}(x_0))$ and $G_n = Gal(K_n/K)$.

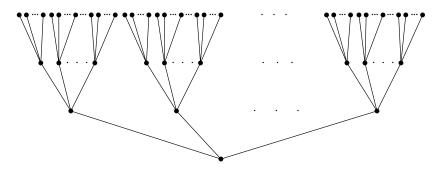


$$K_{\infty} = \bigcup K_n \text{ and } G_{\infty} = \lim_{\leftarrow} G_n = \operatorname{Gal}(K_{\infty}/K)$$

 $G_n \text{ and } G_{\infty} \text{ are called } arboreal Galois groups.}$

T_n and Aut (T_n)

Let $T_n = T_{d,n}$ be a rooted d-ary tree with n levels, $T_{\infty} = \bigcup T_n$, and let $\operatorname{Aut}(T_n)$ and $\operatorname{Aut}(T_{\infty})$ be their automorphism groups.



 $\operatorname{Aut}(T_1) \cong S_d$, $\operatorname{Aut}(T_2) \cong S_d \wr S_d$, and $\operatorname{Aut}(T_n) \cong [S_d]^{\wr n}$. Note: $|\operatorname{Aut}(T_n)| = (d!)^{1+d+d^2+\cdots+d^{n-1}}$

How big is G_n in $Aut(T_n)$?

Because each $\sigma \in G_n$ is completely determined by its action on the roots of $f^n(z) - x_0$,

 G_n is isomorphic to a subgroup of Aut (T_n) .

Expectation: $[\operatorname{Aut}(T_n):G_n]$ is bounded as $n\to\infty$, i.e., $[\operatorname{Aut}(T_\infty):G_\infty]<\infty$, **unless** there is an obvious reason not.

One such "obvious" reason is that f is **PCF**:

Definition

f(z) is **postcritically finite**, or **PCF**, if every critical point of f has finite forward orbit.

A PCF Arboreal Galois Group: $g(z) = -2z^3 + 3z^2$

Note: Critical points are $0, 1, \infty$, and

$$0 \mapsto 0, \quad 1 \mapsto 1, \quad \infty \mapsto \infty$$

so g is PCF.

Theorem (RB, Faber, Hutz, Juul, Yasufuku; 2016)

There is an (explicitly defined) infinite-index subgroup $E_{\infty} \subseteq \operatorname{Aut}(T_{3,\infty})$ with the following property.

Let
$$K$$
 be a number field, let $x_0 \in K$, and let $K_{\infty} = K\Big(\bigcup_{n \geq 0} g^{-n}(x_0)\Big)$.

Then $G_{\infty} = \operatorname{Gal}(K_{\infty}/K)$ is a subgroup of E_{∞} .

Moreover, there infinitely many choices of $x_0 \in K$ for which $G_{\infty} \cong E_{\infty}$.

$$f(z) = z^2 - 1$$
 Over Number Fields

Summer 2017 REU at Amherst with:

Faseeh Ahmad, Jen Cain, Greg Carroll, Lily Fang

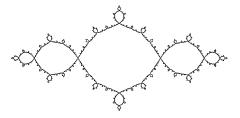
Recall: $f(z) = z^2 - 1$ is PCF, with $0 \mapsto -1 \mapsto 0$.

Question: Is there an analogous subgroup of $Aut(T_{2,\infty})$ for f?

Answer: Yes! But it's more complicated to describe.

$$f(z) = z^2 - 1$$
 over function fields

Let $K = \mathbb{C}(t)$, $f(z) = z^2 - 1$, and $x_0 = t$. The associated arboreal Galois group $G_{\infty} = \operatorname{Gal}(K_{\infty}/K)$ is called the **Basilica group** B_{∞} .



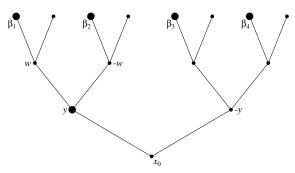
 B_{∞} is a certain well-understood self-similar subgroup of Aut($T_{2,\infty}$).

However, $G_\infty\cong B_\infty$ relies on the fact that $\mathbb C$ is algebraically closed.

[Pink (2013) considers G_{∞} over other function fields.]

What about over number fields?

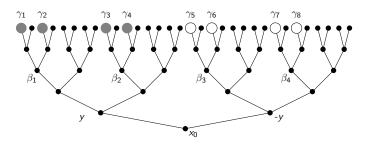
A curious identity for $f(z) = z^2 - 1$



$$eta_1^2eta_2^2=(w+1)(-w+1)=1-w^2=-y$$
, so
$$\left(rac{eta_1eta_2}{eta_3eta_4}
ight)^2=rac{-y}{y}=-1.$$

So K_3 contains ζ_4 , and for $n \ge 4$, G_n has to act the same on ζ_4 for every T_3 subtree of T_n .

More arboreal restrictions for $f(z) = z^2 - 1$



$$\left(\frac{\gamma_1\gamma_2\gamma_3\gamma_4}{\gamma_5\gamma_6\gamma_7\gamma_8}\right)^4 = \left(\frac{\beta_1\beta_2}{\beta_3\beta_4}\right)^2 = \frac{-y}{y} = -1.$$

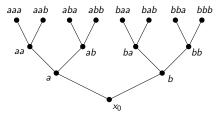
So K_5 contains ζ_8 , and for $n \ge 6$, G_n has to act the same on ζ_8 for every T_5 subtree of T_n .

And so on.

How do we describe this?

Labeling and Parity

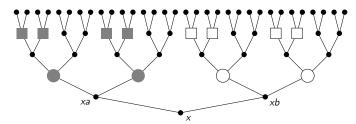
Label each node of $T_{2,n}$ at m-th level by a word in $\{a,b\}^m$:



For $\sigma \in \operatorname{Aut}(T_{2,n})$ and a node x of $T_{2,n}$ define the parity $\operatorname{Par}(\sigma, x)$ of σ at x to be

$$\mathsf{Par}(\sigma,x) := \begin{cases} 0 & \text{if } \sigma(xa) = \sigma(x)a \text{ and } \sigma(xb) = \sigma(x)b \\ 1 & \text{if } \sigma(xa) = \sigma(x)b \text{ and } \sigma(xb) = \sigma(x)a \end{cases}$$

Describing the Basilica



For any node x in the tree, labelled $x \in \{a, b\}^m$, define

$$P(\sigma,x) := (-1)^{\mathsf{Par}(\sigma,x)} + 2\sum_{t \in \{a,b\}} \big[Q(\sigma,xbt) - Q(\sigma,xat)\big],$$

where
$$Q(\sigma,x):=\sum_{i\geq 0}2^i\sum_{s_1,\dots,s_i\in\{a,b\}}\mathsf{Par}ig(\sigma,xas_1as_2\cdots as_iig)\in\mathbb{Z}_2.$$

Note: $P(\sigma, x) \in 1 + 2\mathbb{Z}_2 = \mathbb{Z}_2^{\times} \cong \mathsf{Gal}\left(\mathbb{Q}(\mu_{2^{\infty}})/\mathbb{Q}\right)$

The Arithmetic Basilica

Write $T_{\infty} := T_{2,\infty}$, with root node x_0 . Define

$$M_{\infty}:=ig\{\sigma\in \operatorname{Aut}(T_{\infty})\big|P(\sigma,x)=P(\sigma,x_0) \text{ for all nodes } x \text{ of } T_{\infty}ig\}.$$

Theorem

- 1. M_{∞} is a subgroup of $Aut(T_{2,\infty})$
- 2. $P: M_{\infty} \to \mathbb{Z}_2^{\times}$ by $\sigma \mapsto P(\sigma, x_0)$ is a surjective group homomorphism with kernel B_{∞} .

That is,
$$\{e\} \longrightarrow B_{\infty} \longrightarrow M_{\infty} \stackrel{P}{\longrightarrow} \mathbb{Z}_{2}^{\times} \longrightarrow \{1\}$$

For each $n \ge 1$, let B_n, M_n be the restrictions of B_∞, M_∞ to T_n .

n	1	2	3	4	5	6	7	8
$ \operatorname{Aut}(T_n) $	2^1	2^3	2 ⁷	2^{15}	2^{31}	2 ⁶³	2^{127}	2^{255}
$ M_n $	2^1	2^3	2 ⁷	2^{13}	2 ²⁵	2 ⁴⁷	2^{91}	2^{177}
$ B_n $	2^1	2^3	2 ⁶	2^{12}	2^{23}	2 ⁴⁵	2 ⁸⁸	2 ¹⁷⁴

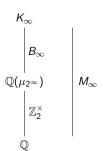
The Expectation/Hope for $f(z) = z^2 - 1$

$$\{e\} \longrightarrow B_{\infty} \longrightarrow M_{\infty} \stackrel{P}{\longrightarrow} \mathbb{Z}_{2}^{\times} \longrightarrow \{1\}$$

Over any field K, we have $K(\mu_{2^{\infty}}) \subseteq K_{\infty}$.

Over $K = \mathbb{C}(t)$ with $x_0 = t$, we have $G_{\infty} \cong B_{\infty}$.

So over \mathbb{Q} , we should expect:



The arboreal Galois group for $f(z) = z^2 - 1$

Theorem (Ahmad, RB, Cain, Carroll, Fang; 2017? 2019?)

Let K be a number field, let $f(z) = z^2 - 1$, and let $x_0 \in K$. For each $n \ge 1$, let

- $ightharpoonup K_n = K(f^{-n}(x_0)), and$
- $G_n = \operatorname{Gal}(K_n/K).$

Then

- 1. G_n is isomorphic to a subgroup of M_n , and
- 2. if $[K_0(\sqrt{x_0}, \sqrt{x_0+1}, \zeta_8) : K_0] = 16$, then $G_n \cong M_n$.

Note: The $\left[K_0\left(\sqrt{x_0}, \sqrt{x_0+1}, \zeta_8\right) : K_0\right] = 16$ condition is equivalent to saying $\left[K_5 : K\right] = |M_5|$.

Sketch of the proof that $G_n \cong M_n$: Start

Levels 1,2,3:

Direct computation shows $\Delta_n(x) = \text{Disc}(f^n(z) - x) = a_n^2 b_n$, where

$$a_n \in K(x)$$
 and $b_n = egin{cases} 1+x & ext{if } n=1, \\ -x & ext{if } n \geq 2 ext{ is even}, \\ -(1+x) & ext{if } n \geq 3 ext{ is odd}. \end{cases}$

Our hypothesis gives $[K(\sqrt{x_0}, \sqrt{x_0+1}, \sqrt{-1}) : K] = 8$, so we can choose the parities of $\sigma \in G_3 \subseteq \operatorname{Aut}(T_3)$ at levels n=1,2,3 independently.

As a result, $G_n \cong M_n \cong \operatorname{Aut}(T_n)$ for n = 1, 2, 3.

Also: $\sqrt{-1} \notin K_2$, but $\sqrt{-1} \in K_3$.

Sketch of the proof that $G_n \cong M_n$: Overall Strategy

Inductively prove, for $n \ge 2$:

- ▶ K_{2n-1} contains all the 2^n -roots of unity, but K_{2n-2} does not.
- ▶ K_{2n-1} contains a 2^n -root of $x_0 + 1$, but K_{2n-2} does not.
- \triangleright K_{2n} contains a 2^n -root of $-x_0$, but K_{2n-1} does not.
- $ightharpoonup G_{2n-1}\cong M_{2n-1}$ and $G_{2n}\cong M_{2n}$

Sketch of the proof that $G_n \cong M_n$: Another tool

How do we show K_n does NOT contain certain roots?

Example: Proving K_3 does not contain $\sqrt[4]{-x_0}$:

Let $H = Gal(K_3/K_1(i))$.

By hypothesis, $\sqrt{-x_0} \notin K_1(i) = K(i, \sqrt{x_0 + 1})$.

Thus, if $\sqrt[4]{-x_0} \in K_3$, then H has a quotient isomorphic to $\mathbb{Z}/4$.

Hence $H^{ab} = H/\text{Comm}(H)$ has a quotient isomorphic to $\mathbb{Z}/4$.

Analyze the action of H on T_3 to show that:

for all
$$\sigma \in H$$
, $\sigma^2 \in Comm(H)$.

Contradiction!

