Non-archimedean Dynamics in Dimension One: Lecture 2

Robert L. Benedetto Amherst College

Arizona Winter School

Sunday, March 14, 2010

Problems with $\mathbb{P}^1(\mathbb{C}_K)$

- $ightharpoonup \mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $ightharpoonup \mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}^1_{\mathsf{Ber}}$ that:

- ightharpoonup contains $\mathbb{P}^1(\mathbb{C}_K)$ as a subspace,
- is compact,
- ▶ is (still) Hausdorff, and
- is path-connected.

The Gauss Norm

 $\overline{\mathcal{A}}(0,1)=\mathbb{C}_{\mathcal{K}}\langle\langle z \rangle\rangle$ is the ring of all power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathbb{C}_K[[z]]$$
 such that $\lim_{n \to \infty} c_n = 0$,

i.e., the ring of power series converging on $\overline{D}(0,1)$.

The Gauss norm on $\overline{\mathcal{A}}(0,1)$ is $\|\cdot\|_{\zeta(0,1)}:\overline{\mathcal{A}}(0,1)\to[0,\infty)$, by

$$\left\| \sum_{n=0}^{\infty} c_n z^n \right\|_{\zeta(0,1)} := \max\{ |c_n| : n \ge 0 \}.$$

Equivalently, for all $f \in \overline{\mathcal{A}}(0,1)$,

$$\|f\|_{\zeta(0,1)} := \sup\{|f(x)| : x \in \overline{D}(0,1)\}$$

= $\max\{|f(x)| : x \in \overline{D}(0,1)\}$

Bounded Multiplicative Seminorms

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function $\zeta = \|\cdot\|_{\mathcal{C}} : \overline{\mathcal{A}}(0,1) \to [0,\infty)$ such that

- $\|0\|_{\zeta} = 0 \text{ and } \|1\|_{\zeta} = 1,$
- $\qquad \|fg\|_{\zeta} = \|f\|_{\zeta} \cdot \|g\|_{\zeta} \text{ for all } f,g \in \overline{\mathcal{A}}(0,1),$
- lacksquare $\|f+g\|_{\zeta}\leq \|f\|_{\zeta}+\|g\|_{\zeta}$ for all $f,g\in\overline{\mathcal{A}}(0,1)$, and
- $||f||_{\zeta} \leq ||f||_{\zeta(0,1)} \text{ for all } f \in \overline{\mathcal{A}}(0,1).$

Note: We do **not** require that $||f||_{\zeta} = 0$ implies f = 0.

By the way: we get $||f + g||_{\zeta} \le \max\{||f||_{\zeta}, ||g||_{\zeta}\}$ for free.

Examples of Bounded Multiplicative Seminorms

- 1. For any $x \in \overline{D}(0,1)$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|$.
- 2. For any disk $D \subseteq \overline{D}(0,1)$, define $\|\cdot\|_D$ by

$$||f||_D := \sup\{|f(x)| : x \in D\}.$$

If
$$D=\overline{D}(a,r)$$
 or $D=D(a,r)$, and $f(z)=\sum c_n(z-a)^n$, then
$$\|f\|_D=\max\{|c_n|r^n:n\geq 0\}.$$

If *D* is rational closed, then $||f||_D = \max\{|f(x)| : x \in D\}$.

Since $\|\cdot\|_{\overline{D}(a,r)} = \|\cdot\|_{D(a,r)}$, we can denote both by $\|\cdot\|_{\zeta(a,r)}$.

The Berkovich Disk

Definition

The **Berkovich unit disk** $\overline{D}_{Ber}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

As a topological space, $\overline{D}_{Ber}(0,1)$ is equipped with the **Gel'fand topology**.

This is the weakest topology such that for every $f\in\overline{\mathcal{A}}(0,1)$, the map $\overline{D}_{\mathsf{Ber}}(0,1)\to\mathbb{R}$ given by

$$\zeta \mapsto ||f||_{\zeta}$$

is continuous.

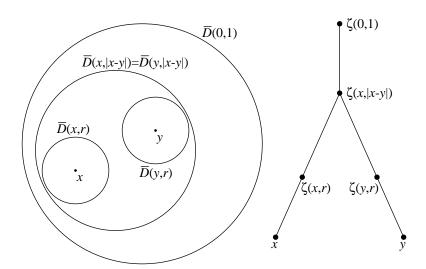
Berkovich's Classification of Points

There are four kinds of points in $\overline{D}_{Ber}(0,1)$.

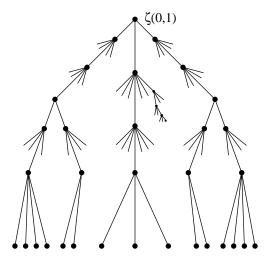
- 1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x\in \overline{D}(0,1)$.
- 2. Type II: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **rational** closed disks $\overline{D}(a,r)\subseteq \overline{D}(0,1)$.
- 3. Type III: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **irrational** disks $\overline{D}(a,r)\subset \overline{D}(0,1)$.
- 4. Type IV: norms $\|\cdot\|_{\zeta}$ corresponding to (equivalence classes of) decreasing chains $D_1 \supseteq D_2 \supseteq \cdots$ of disks with **empty** intersection.

Chains of disks as in Type IV must have radius bounded below.

Path-connectedness, intuitively

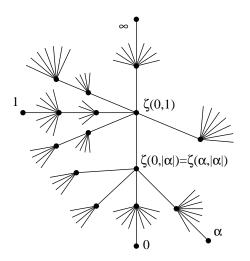


$\overline{D}_{\mathsf{Ber}}(0,1)$ as an \mathbb{R} -tree



The Berkovich Projective Line $\mathbb{P}^1_{\mathsf{Ber}}$

Glue two copies of $\overline{D}_{Ber}(0,1)$ along |z|=1 via $z\mapsto 1/z$.



Berkovich Disks

Definition

Let $a \in \mathbb{C}_K$ and r > 0.

- ▶ The closed Berkovich disk $\overline{D}_{Ber}(a,r)$ is the set of all $\zeta \in \mathbb{P}^1_{Ber}$ corresponding to a point/disk/chain of disks contained in $\overline{D}(a,r)$.
- ▶ The **open Berkovich disk** $D_{\mathsf{Ber}}(a,r)$ is the set of all $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$ corresponding to a point/disk/chain of disks contained in D(a,r), **except** $\zeta(a,r)$ itself.

Fact:

$$D_{\mathsf{Ber}}(a,r)$$
 is open, and $\overline{D}_{\mathsf{Ber}}(a,r)$ is closed.

Moreover:

The open Berkovich disks and the complements of closed Berkovich disks together form a **subbasis** for the Gel'fand topology.

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

- ► The open connected Berkovich affinoids form a basis for the Gel'fand topology.
- ▶ P¹_{Ber} is uniquely path-connected.

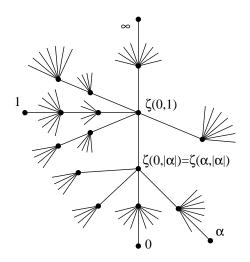
For any $\zeta \in \mathbb{P}^1_{\rm Ber}$, the complement $\mathbb{P}^1_{\rm Ber} \smallsetminus \{\zeta\}$ consists of

- 1. one component if ζ is type I or type IV,
- 2. infinitely many components if ζ is type II,
- 3. two components if ζ is type III.

The components of $\mathbb{P}^1_{\mathsf{Ber}} \setminus \{\zeta\}$ are called the **directions** at ζ .



Recall: The Berkovich Projective Line $\mathbb{P}^1_{\mathsf{Ber}}$



Rational Functions Acting on $\mathbb{P}^1_{\mathsf{Ber}}$

Let $\phi(z) \in \mathbb{C}_K(z)$. Then for each point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is a unique point $\phi(\zeta) \in \mathbb{P}^1_{\mathsf{Ber}}$ such that

$$||h||_{\phi(\zeta)} = ||h \circ \phi||_{\zeta}$$

for all $h \in \mathbb{C}_K(z)$.

If ζ is type I, then $\phi(\zeta)$ is what you think.

Then $\phi: \mathbb{P}^1_{\mathsf{Ber}} \to \mathbb{P}^1_{\mathsf{Ber}}$ is the unique continuous extension of $\phi: \mathbb{P}^1(\mathbb{C}_K) \to \mathbb{P}^1(\mathbb{C}_K)$.

Understanding degree one maps on $\mathbb{P}^1_{\mathsf{Ber}}$

- $\phi(z) = cz$ maps $\zeta(a, r)$ to $\zeta(ca, |c|r)$.
- $\phi(z) = z + b$ maps $\zeta(a, r)$ to $\zeta(a + b, r)$.
- $\phi(z) = 1/z \text{ maps } \zeta(a,r) \text{ to } \begin{cases} \zeta(0,1/r) & \text{if } 0 \in \overline{D}(a,r), \\ \zeta(1/a,r/|a|^2) & \text{if } 0 \notin \overline{D}(a,r). \end{cases}$
- ▶ So for any $\phi \in \operatorname{PGL}(2, \mathbb{C}_K)$, i.e., $\phi(z) = \frac{az+b}{cz+d}$ with $ad-bc \neq 0$, you can figure out what $\phi(\zeta)$ is for any $\zeta \in \mathbb{P}^1_{\operatorname{Ber}}$.
- ▶ Given $\phi \in \mathrm{PGL}(2, \mathbb{C}_K)$, then

$$\phi(\zeta(0,1))=\zeta(0,1) \quad \text{if and only if} \quad \phi\in\mathrm{PGL}(2,\mathcal{O}),$$

i.e.,
$$\phi(z) = \frac{az+b}{cz+d}$$
 with $|a|, |b|, |c|, |d| \le 1$ and $|ad-bc| = 1$.

Reduction of $\phi \in \mathbb{C}_K(z)$

For more general $\phi \in \mathbb{C}_K(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

Write
$$\phi(z) = \frac{a_d z^d + \dots + a_1 z + a_0}{b_d z^d + \dots + b_1 z + b_0}$$
, with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$.

Then
$$\overline{\phi}(z) := \frac{\overline{a}_d z^d + \cdots + \overline{a}_1 z + \overline{a}_0}{\overline{b}_d z^d + \cdots + \overline{b}_1 z + \overline{b}_0} \in \overline{k}(z).$$

But we might have cancellation in $\overline{\phi}$.

If $\deg \overline{\phi} = \deg \phi$, we say ϕ has **good reduction**. If $\deg \overline{\phi} \geq 1$, we say ϕ has **nonconstant reduction**.

Fact: $\phi(\zeta(0,1)) = \zeta(0,1)$ if and only if ϕ has nonconstant reduction.

Understanding $\phi \in \mathbb{C}_K(z)$ at type II points

- ▶ For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.
- ▶ Given $\phi \in \mathbb{C}_K(z)$ nonconstant and $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$ of type II, choose $\eta \in \mathrm{PGL}(2,\mathbb{C}_K)$ for ζ as above. Then there is some $\theta \in \mathrm{PGL}(2,\mathbb{C}_K)$ such that the rational function

$$\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_K(z)$$

has nonconstant reduction.

- ► Then $\phi(\zeta) = \theta^{-1}(\zeta(0,1))$.
- ▶ $\eta, \theta \in \operatorname{PGL}(2, \mathbb{C}_K)$ are not unique, but the cosets $\operatorname{PGL}(2, \mathcal{O})\eta$ and $\operatorname{PGL}(2, \mathcal{O})\theta$ are unique.

Example

$$\mathbb{C}_K = \mathbb{C}_p$$
, $\zeta = \zeta(0, |p|_p)$, and $\phi(z) = \frac{z^3 - z^2 + z + p^2}{z}$.

What is $\phi(\zeta)$?

 $\eta(z)=z/p$ maps ζ to $\zeta(0,1)$, and

$$\phi \circ \eta^{-1}(z) = \phi(\rho z) = \frac{\rho^2 z^3 - \rho z^2 + z + \rho}{z}.$$

Note $\overline{\phi \circ \eta^{-1}} = z/z = 1$ is constant.

So let
$$\theta(z) = (z-1)/p$$
.

Then
$$\theta \circ \phi \circ \eta^{-1}(z) = \frac{pz^3 - z^2 + 1}{z}$$
, and so $\overline{\theta \circ \phi \circ \eta^{-1}}(z) = (1 - z^2)/z$ is nonconstant.

So
$$\phi(\zeta) = \theta^{-1}(\zeta(0,1)) = \zeta(1,|p|_p).$$

Dynamics on $\mathbb{P}^1_{\mathsf{Ber}}$: Classifying Periodic Points

Definition

If ζ and ξ are type II points and $\phi(\zeta) = \xi$, then the **local degree** or **multiplicity** of ϕ at ζ is

$$\deg_\zeta \phi := \deg \overline{\theta \circ \phi \circ \eta^{-1}},$$

where $\eta(\zeta) = \zeta(0,1)$ and $\theta(\xi) = \zeta(0,1)$.

If ζ is type II and periodic of exact period n, we say ζ is

- ▶ indifferent (or neutral) if $\deg_{\zeta} \phi^n = 1$.
- ▶ **repelling** if $\deg_{\zeta} \phi^n \ge 2$.

Warning: Repelling type II points (usually) do not actually repel in most directions.

Note: Periodic type III and IV points are always indifferent.

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}^1_{\mathsf{Ber}}$ is **dynamically stable** under $\phi \in \mathbb{C}_K(z)$ if $\bigcup_{n \geq 0} \phi^n(U)$ omits infinitely many points of $\mathbb{P}^1_{\mathsf{Ber}}$.

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\mathsf{Ber}} = \mathcal{F}_{\phi,\mathsf{Ber}}$ given by

 $\mathcal{F}_{\mathsf{Ber}} := \{x \in \mathbb{P}^1_{\mathsf{Ber}} : x \text{ has a dynamically stable neighborhood}\}.$

The (Berkovich) Julia set of ϕ is the set

$$\mathcal{J}_\mathsf{Ber} = \mathcal{J}_{\phi,\mathsf{Ber}} := \mathbb{P}^1_\mathsf{Ber} \smallsetminus \mathcal{F}_{\phi,\mathsf{Ber}}.$$

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\mathsf{Ber}}$ is open, and $\mathcal{J}_{\mathsf{Ber}}$ is closed.
- lacksquare $\mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}},$ and $\mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$
- $\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}}), \text{ and }$ $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}}).$
- $ightharpoonup \mathcal{F} = \mathcal{F}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_K)$, and $\mathcal{J} = \mathcal{J}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_K)$.
- All attracting periodic points are Fatou.
- ▶ All repelling periodic points are Julia.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field, but they can be Julia otherwise.

In general, if $\zeta(0,1)$ is fixed by ϕ , and if $\overline{\phi}^m(z) = z$ for some $m \ge 1$, then $\zeta(0,1)$ is Fatou.

$\mathbb{P}^1(\mathbb{C})$, $\mathbb{P}^1(\mathbb{C}_K)$, and $\mathbb{P}^1_{\mathsf{Ber}}$

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		
${\cal J}$ is compact	${\cal J}$ may not	\mathcal{J}_{Ber} is compact
	be compact	
${\cal J}$ is nonempty	${\cal J}$ may be empty	\mathcal{J}_{Ber} is nonempty
${\mathcal F}$ may be empty	${\mathcal F}$ is nonempty	\mathcal{F}_{Ber} is nonempty
${\cal J}$ is the closure		\mathcal{J}_{Ber} is the closure
of the set of	???	of the set of
repelling periodic	(see Project #1)	repelling periodic
points		(Type I & II) points