Integrality and *p*-adic discreteness results for postcritically finite parameters

*Rob Benedetto, Amherst College Su-Ion Ih, University of Colorado

Arithmetic Dynamics International Online Seminar Wednesday, July 1, 2020

Quick Facts on p-adic Numbers

Fix $p \geq 2$ a prime number. \mathbb{C}_p is an algebraically closed field that contains \mathbb{Q} and is equipped with an absolute value $|\cdot|_p$.

- $ightharpoonup \mathbb{C}_p$ has characteristic zero, but $|p|_p < 1$.
- $|\cdot|_p$ is non-archimedean, meaning:

$$|x+y|_{p} \leq \max\{|x|_{p},|y|_{p}\}$$
 for all $x,y \in \mathbb{C}_{p}$.

This implies:

- $|x+y|_p = |x|_p \text{ if } |x|_p > |y|_p,$
- all disks are topologically both open and closed
- any point of a disk is its center
- $ightharpoonup \mathbb{Z}$ is contained in the closed unit disk $\overline{D}(0,1)$
- $ightharpoonup \mathbb{C}_p$ is complete with respect to $|\cdot|_p$.

Local *p*-adic Dynamics

Let
$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots \in \mathbb{C}_p[[z]],$$
 with $|a_i|_p \le 1$ for all i , and $|a_0|_p < 1$.

Assume $|a_m|_p = 1$ for some minimal $m \ge 1$, called the **Weierstrass degree** of f on D(0,1).

Then f maps the open unit disk D(0,1) onto itself m-to-1.

Conversely, if $f:D(0,1)\to D(0,1)$ is (rigid) analytic, surjective, and finite-to-one,

then f is of the form above.

There are two main cases:

Case 1: $|a_1|_p < 1$. Equivalently, $m \ge 2$.

Case 2: $|a_1|_p = 1$. Equivalently, m = 1.

Local *p*-adic Dynamics: Attracting Case (no big surprises)

```
\begin{split} f(z) &= a_0 + a_1 z + a_2 z^2 + \dots \in \mathbb{C}_p[[z]], \\ \text{with } |a_i|_p &\leq 1 \text{ for all } i, \text{ and } |a_0|_p < 1. \\ \text{and } |a_m|_p &= 1 \text{ for some minimal } m \geq 1, \\ \text{so } f \text{ maps the open unit disk } D(0,1) \text{ onto itself } m\text{-to-}1. \end{split}
```

If $|a_1|_p < 1$, then D(0,1) contains an attracting fixed point β .

- ▶ All points of D(0,1) are attracted to β under iteration of f.
- ▶ Unless β is a totally ramified fixed point, there will be infinitely many preperiodic points in D(0,1), all eventually mapping to β .

Mild surprise for complex dynamicists: If p|m, there might not be any critical points in this basin of attraction.

Local *p*-adic Dynamics: Indifferent Case (some surprises!)

$$\begin{split} f(z) &= a_0 + a_1 z + a_2 z^2 + \dots \in \mathbb{C}_p[[z]], \\ \text{with } |a_i|_p &\leq 1 \text{ for all } i, \text{ and } |a_0|_p < 1. \\ \text{and } |a_m|_p &= 1 \text{ for some minimal } m \geq 1, \\ \text{so } f \text{ maps the open unit disk } D(0,1) \text{ onto itself } m\text{-to-}1. \end{split}$$

If $|a_1|_p = 1$, (and assuming a modest technical assumption), then f has **infinitely** many indifferent periodic points in D(0,1).

Why? Consider the coefficients "mod p" If $g(z) = z + bz^n + O(z^{n+1})$ and $h(z) = z + cz^n + O(z^{n+1})$, then $g \circ h(z) = z + (b+c)z^n + O(z^{n+1})$. So $g^p(z) = z + O(z^{n+1})$.

So p-adic Siegel disks:

- contain infinitely many indifferent periodic points.
- ▶ are stable in moduli space: if f has a Siegel disk and $g \approx f$, then g also has a Siegel disk.

Dynamics of *p*-adic Rational Functions

If $f(z) \in \mathbb{C}_p(z)$ is a rational function of degree $d \geq 2$, then f has a Fatou set and a Julia set.

Theorem (Rivera-Letelier, 2003)

If *U* is a periodic component of the Fatou set, with period *n*, then either:

- ▶ *U* is attracting: there is a unique attracting periodic point $\beta \in U$ (of period n), and all points of *U* are attracted to β under iteration of f^n , or
- ▶ U is indifferent: U is an open disk with finitely many closed disks removed. fⁿ maps U bijectively onto itself.
- ▶ In the attracting case, U (probably) contains infinitely many preperiodic points, all of which eventually land on β .
- ▶ In the indifferent case, *U* contains infinitely many preperiodic points, all of which are periodic.

Postcritically Finite Maps

Definition

A rational function f is *postcritically finite*, or *PCF*, if every critical point c of f is preperiodic under f.

Example.
$$f(z) = z^d$$
: $\infty \mapsto \infty$ $0 \mapsto 0$

Example.
$$f(z) = z^2 - 1$$
: $\infty \mapsto \infty$ $0 \mapsto -1 \mapsto 0$

Example.
$$f(z) = z^2 - 2$$
: $\infty \mapsto \infty$ $0 \mapsto -2 \mapsto 2 \mapsto 2$

Example.
$$f(z) = z^2 + i$$
: $\infty \mapsto \infty$ $0 \mapsto i \mapsto i - 1 \mapsto -i \mapsto i - 1$

Example.
$$f(z) = -2z^3 + 3z^2$$
: $\infty \mapsto \infty$ $0 \mapsto 0$ $1 \mapsto 1$

Example.
$$f(z) = \frac{6z^2 + 16z + 16}{-3z^2 - 4z - 4}$$
:
 $0 \mapsto -4 \mapsto -\frac{4}{3} \mapsto -\frac{4}{3} \qquad -2 \mapsto -1 \mapsto -2$

Lots of PCF Parameters

Let K be an algebraically closed field (like \mathbb{C} or \mathbb{C}_p)

Example. Fix a PCF map $\phi(z) \in K(z)$, let $h_t(z) \in PGL(2, K(t))$ be a one-parameter family of linear fractional transformations, and let $f_t = h_t \circ \phi \circ h_t^{-1}$.

Then f_t is PCF for all parameters t.

(Isotrivial)

Example. Let E_t be a one-parameter family of elliptic curves, and let g_t be the Lattès map for $[m]: E_t \to E_t$.

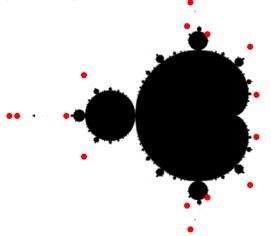
Then g_t is PCF for all parameters t.

(Flexible Lattès)

Example. Let $K = \mathbb{C}$ and let $f_c(z) = z^2 + c$.

Then the PCF parameters c are dense in the boundary of the Mandelbrot set.

Example: $f_c^7(0) = f_c^5(0)$



 $f_c(z) = z^2 + c$. These are the roots of the Misiurewicz polynomial

$$\frac{\left(f_c^6(0) + f_c^4(0)\right) \cdot f_c(0)}{\left(f_c^5(0) + f_c^4(0)\right) \cdot f_c^2(0)}$$

A Stability Condition for One-Parameter p-adic Families

Fix $d \geq 2$, $b \in \mathbb{C}_p$, and S > 0.

Let $f_c(z)$ be a one-parameter family of rational functions, with coefficients meromorphic in the parameter $c \in D(b, S) \subseteq \mathbb{C}_p$.

Consider the following stability condition: for all $c \in D(b, S)$,

- ▶ $f_c(z) \in \mathbb{C}_p(z)$ with $deg(f_c) = d$,
- ▶ the critical points of f_c are $\alpha_1(c), \ldots, \alpha_{2d-2}(c)$ (also meromorphic functions of c), and
- ▶ for each i = 1, ..., 2d 2, there are open disks $U_{i,j}$ with

$$\alpha_i(c) \in U_{i,0} \stackrel{f_c}{\rightarrow} U_{i,1} \stackrel{f_c}{\rightarrow} U_{i,2} \stackrel{f_c}{\rightarrow} \cdots \stackrel{f_c}{\rightarrow} U_{i,N_i}$$

with $U_{i,N_i} \subseteq U_{i,M_i}$, where $N_i > M_i \ge 0$.

Example: Fix $d \ge 2$ and fix $b \in \mathbb{C}_p$ with $|b|_p \le 1$.

Let
$$f_c(z) = z^d + c$$
 for $c \in D(b, 1)$,

with
$$\alpha_1 = \ldots = \alpha_{d-1} = 0$$
, and $\alpha_d = \ldots = \alpha_{2d-2} = \infty$.

p-adic PCF Parameters

Theorem (B-Ih)

Let $f_c(z)$ be a one-parameter family satisfying our stability condition on D(b, S). Then either

- 1. f_c is conjugate to f_b for all $c \in D(b, S)$, or
- 2. f_c is flexible Lattès for all $c \in D(b, S)$, or
- 3. for any 0 < s < S, there are only finitely many $c \in D(b, s)$ for which f_c is PCF.

Corollary

Let
$$f_c(z) = z^d + c$$
. Let

$$T = \{c \in \mathbb{C}_p | f_c \text{ is PCF } \}$$

Then the set T has no accumulation points in $\mathbb{P}^1(\mathbb{C}_p)$.

Some Examples

Example: p = 2, d = 2: $f_c(z) = z^2 + c$ over \mathbb{C}_2 . Note:

$$c = 0, -2 \in D(0, 1)$$
 and $c = -1, i, -i \in D(1, 1)$

are all PCF parameters. More generally, for any $n \ge 1$, the roots of $f_c^n(0) + f_c^{n-1}(0) \in \mathbb{C}_2[c]$ all lie in D(0,1).

Example: p = 3, d = 2: $f_c(z) = z^2 + c$ over \mathbb{C}_3 . One can show $f_c^{1+3^n}(0) + f_c(0) \in \mathbb{C}_3[c]$ has (many) roots in D(1,1).

Example: $f_c(z) := c(pz^{p+1} - (p+1)z^p + 1)$ has critical points at $z = 0, 1, \infty$, with

$$\infty \mapsto \infty$$
, $1 \mapsto 0 \mapsto c$.

So f_c is PCF if and only if c is preperiodic.

BUT infinitely many PCF parameters accumulate at $c = 1 + p^{-1}$.

This is not a stable family; for $c = 1 + p^{-1}$, f_c has a repelling fixed point at z = c.

Integrality

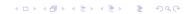
Let k be a number field with algebraic closure \overline{k} , and let $S \subseteq M_k$ be a finite set of places of k, including all the archimedean places.

Definition

Let D be a divisor on $\mathbb{P}^1(\overline{k})$ defined over k. A point $x \in \mathbb{P}^1(\overline{k})$ is (D,S)-integral if for any place $v \notin S$ of k, and for any $\sigma \in \operatorname{Gal}(\overline{k}/k)$, the reduction of x^{σ} modulo v is disjoint from the support of D modulo v.

In particular, if $\alpha \in k$, then $x \in \mathbb{P}^1(\overline{k})$ is $((\alpha), S)$ -integral iff $x^{\sigma} \not\equiv \alpha \pmod{v} \quad \text{for all } v \in M_k \setminus S \text{ and all } \sigma \in \operatorname{Gal}(\overline{k}/k).$

For example, if $k=\mathbb{Q}$ and $S=\{\infty\}$, then $\{x\in\mathbb{P}^1(\mathbb{Q}):x\text{ is }((\infty),S)\text{-integral}\}=\mathbb{Z}.$



A Result on Integrality of PCF Parameters

Let k be a number field, and let $S \subseteq M_k$ be a finite set of places of k, including all the archimedean places.

Corollary

Let $d \ge 2$, and let $f_c(z) = z^d + c$.

Let $\alpha \in k$, and suppose that f_{α} is **not** PCF.

Suppose also that for any archimedean place v of k, α does not lie in the boundary of the multibrot set

$$\mathbf{M}_{d,v}:=\{c\in\mathbb{C}:|f_c^n(0)|_v \text{ is bounded as } n o\infty\}.$$

Then there are only finitely many parameters $c \in \overline{k}$ which are $((\alpha), S)$ -integral and for which f_c is PCF.

Proving the Corollary

Corollary

Let $d \ge 2$, and let $f_c(z) = z^d + c$. Let $\alpha \in k$ with f_α not PCF.

Suppose that for any archimedean place v of k, $\alpha \not\in \partial \mathbf{M}_{d,v}$

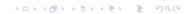
Then there are only finitely many parameters $c \in \overline{k}$ which are $((\alpha), S)$ -integral and for which f_c is PCF.

Sketch of Proof: Suppose $\{x_n\}_{n\geq 1}$ is a sequence of **distinct** PCF parameters in \overline{k} that are $((\alpha), S)$ -integral.

$$0 < \hat{h}_{f_{\alpha}}(0) = \sum_{\mathbf{v} \in M_{k}} \frac{[k_{\mathbf{v}} : \mathbb{Q}_{\mathbf{v}}]}{[k : \mathbb{Q}]} \int_{\mathbb{P}^{1}_{\mathsf{an},\mathbf{v}}} \log|x - \alpha|_{\mathbf{v}} d\mu_{\mathsf{Bif},\mathbf{v}}(x)$$

where $\mu_{\mathrm{Bif},v}$ is the bifurcation measure for the family f_{c} at v.

We'd like to apply equidistribution results [Yuan (2008) and Ghioca-Krieger-Nguyen-Ye (2015)] but $x \mapsto \log |x - \alpha|_v$ is not continuous.



Proof of Corollary, continued

For each $v \in M_k$, there is $r_v > 0$ so that $D(\alpha, r_v) \subseteq \mathbb{C}_v$ contains no PCF parameters and does not intersect $\partial \mathbf{M}_{d,v}$.

For v archimedean, this is by hypothesis.

For v non-archimedean, this is by our Theorem.

Let
$$F_{\nu}(x) := \log \max\{r_{\nu}, |x - \alpha|_{\nu}\}$$
. Then

$$\int_{\mathbb{P}^1_{\mathsf{an},\nu}} \log |x - \alpha|_{\nu} \, d\mu_{\mathsf{Bif},\nu}(x) = \int_{\mathbb{P}^1_{\mathsf{an},\nu}} F_{\nu}(x) \, d\mu_{\mathsf{Bif},\nu}(x)$$

$$= \lim_{n \to \infty} \frac{1}{[k(x_n) : k]} \sum_{\sigma} F_{\nu}(x_n^{\sigma}) = \lim_{n \to \infty} \frac{1}{[k(x_n) : k]} \sum_{\sigma} \log |x_n^{\sigma} - \alpha|_{\nu},$$

where the sum is over all field embeddings $\sigma: k(x_n) \hookrightarrow \mathbb{C}_v$ fixing k.

Finishing the Proof of the Corollary

By integrality, we have $|x_n^{\sigma} - \alpha|_v = 1$ for all $v \in M_k \setminus S$ and all x_n and σ . Thus,

$$0 < \hat{h}_{f_{\alpha}}(0) = \sum_{v \in M_{k}} \lim_{n \to \infty} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k(x_{n}) : \mathbb{Q}]} \sum_{\sigma} \log |x_{n}^{\sigma} - \alpha|_{v}$$

$$= \sum_{v \in S} \lim_{n \to \infty} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k(x_{n}) : \mathbb{Q}]} \sum_{\sigma} \log |x_{n}^{\sigma} - \alpha|_{v}$$

$$= \lim_{n \to \infty} \sum_{v \in S} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k(x_{n}) : \mathbb{Q}]} \sum_{\sigma} \log |x_{n}^{\sigma} - \alpha|_{v}$$

$$= \lim_{n \to \infty} \sum_{v \in M_{k}} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k(x_{n}) : \mathbb{Q}]} \sum_{\sigma} \log |x_{n}^{\sigma} - \alpha|_{v} = 0$$

Contradiction!

QED

Recall Stability Condition and Main Theorem

[Modified to replace D(b, S) by D(0, S).]

Stability Condition: for all $c \in D(0, S)$,

- ▶ $f_c(z) \in \mathbb{C}_p(z)$ with $\deg(f_c) = d$,
- ▶ the critical points of f_c are $\alpha_1(c), \ldots, \alpha_{2d-2}(c)$, and
- ▶ for each i = 1, ..., 2d 2, there are open disks $U_{i,j}$ with

$$\alpha_i(c) \in U_{i,0} \stackrel{f_c}{\to} U_{i,1} \stackrel{f_c}{\to} U_{i,2} \stackrel{f_c}{\to} \cdots \stackrel{f_c}{\to} U_{i,N_i}$$
 with $U_{i,N_i} \subseteq U_{i,M_i}$, where $N_i > M_i \ge 0$.

Theorem (B-Ih)

Let $f_c(z)$ be a one-parameter family satisfying our stability condition on D(0, S). Then either

- 1. f_c is conjugate to f_0 for all $c \in D(0, S)$, or
- 2. f_c is flexible Lattès for all $c \in D(0, S)$, or
- 3. for any 0 < s < S, there are only finitely many $c \in D(0, s)$ for which f_c is PCF.

Sketch of Proof: Setup

Let $\alpha = \alpha(c)$ be a critical point of f_c .

Replacing f_c by f_c^N and changing coordinates, we can assume that:

$$f_c(\alpha(c)) = 0$$
, and $f_c(D(0,1)) \subseteq D(0,1)$

for all $c \in D(0, S)$.

We must show either

- 1. there are integers $n > m \ge 0$ such that $f_c^n(0) = f_c^m(0)$ for all $c \in D(0, S)$, (i.e., $\alpha(c)$ is persistently preperiodic), or
- 2. for any 0 < s < S, there are only finitely many $c \in D(0, s)$ for which 0 and every critical point of f_c in D(0,1) are all preperiodic.

Case 1:
$$|f_0'(0)|_p < 1$$

(Attracting component)

Case 2: $|f_0'(0)|_p = 1$

$$|f_0'(0)|_p = 1$$

(Siegel disk)

Case 1: $|f_0'(0)|_p < 1$

Then we can show f_c has an attracting fixed point $\beta(c) \in D(0,1)$ for every $c \in D(0,S)$.

For any 0 < s < S, a p-adic analysis argument (similar to that in B-Ingram-Jones-Levy 2014) shows there is an integer $n = n(s) \ge 0$ (**independent of** c) so that for all $c \in D(0, s)$, either

- 1. $f_c^n(0) = \beta(c)$, or
- 2. $f_c^n(0) \neq \beta(c)$ but is very close, or
- 3. $f_c^n(\gamma_c) \neq \beta(c)$ but is very close, for some critical point γ_c .

When (2) or (3) happens, either $\alpha(c)$ or γ_c has infinite forward orbit under f_c . Thus, f_c is not PCF.

If (1) happens infinitely often on D(0,s), then the power series $f_c^n(0) - \beta(c) \in \mathbb{C}_p[[c]]$ has infinitely many zeros in a proper subdisk of D(0,S) and hence is trivial.

Thus, if (1) happens infinitely often on D(0, s), then $\alpha(c)$ is persistently preperiodic on D(0, S).

Case 2:
$$|f_0'(0)|_p = 1$$

Choose $e \ge 1$ so that $|f_0'(0)^e - 1|_p < 1$.

Then we can show $|(f_c^e)'(0)-1|_p<1$ for **every** $c\in D(0,S)$.

The iterative logarithm of f_c is

$$\Lambda_c(z) := \lim_{n \to \infty} p^{-n} \big(f_c^{ep^n}(z) - z \big),$$

which is a (two-variable) power series converging on $(c,z) \in D(0,S) \times D(0,1)$, following Rivera-Letelier 2003.

Idea: $\Lambda_c(z)$ measures how close $f_c^{ep^n}(z)$ is to z, relative to p^n .

Define $F(c) := \Lambda_c(0) \in \mathbb{C}_p[[c]]$, which is a power series converging on D(0, S).

Intuitive Digression on the Iterative Logarithm

Given $f(z)=a_0+a_1z+a_2z^2+\cdots\in\mathbb{C}_p[[z]],$ with $|a_i|_p\leq 1$ for all i, and $|a_0|_p<1.$ Assume $|a_1|_p=1.$ In fact, assume $|a_1-1|_p<1.$ Define

$$\Lambda(z) := \lim_{n \to \infty} p^{-n} (f^{p^n}(z) - z).$$

Example.
$$f(z) = z + 1$$
. Then $f^{p^n}(z) = z + p^n$, so

$$\Lambda(z) = \lim_{n \to \infty} p^{-n} (z + p^n - z) = 1.$$

Example. $f(z) = (1+z)^d - 1$, where $d \equiv 1 \pmod{p}$. Then

$$\Lambda(z) = \lim_{n \to \infty} \frac{1}{p^n} \Big((1+z)^{d^{p^n}} - 1 - z \Big) = (\log_p d)(1+z) \log_p (1+z).$$

Note: For $z \in D(0,1)$, $\Lambda(z) = 0 \Leftrightarrow (1+z)$ is a *p*-power root of unity $\Leftrightarrow z$ is periodic.

Back to the Proof: Case 2: $|f_0'(0)|_p = 1$: continued

$$\Lambda_c(z) = \lim_{n \to \infty} p^{-n} (f_c^{ep^n}(z) - z), \quad \text{and} \quad F(c) = \Lambda_c(0)$$

By results of Rivera-Letelier, *Astérisque* 2003 (Section 3.2) on the iterative logarithm,

$$F(c) = 0$$
 iff $z = 0$ is periodic under f_c , i.e., iff $\alpha(c)$ is preperiodic under f_c .

If F is identically zero, then for each $c \in D(0, S)$, there are integers $n(c) > m(c) \ge 0$ so that $f_c^{n(c)}(\alpha(c)) = f_c^{m(c)}(\alpha(c))$.

Some such pair n > m occurs uncountably often, so $f_c^n(\alpha(c)) = f_c^m(\alpha(c))$ for **all** $c \in D(0, S)$.

Otherwise, for any 0 < s < S, there are only finitely many $c \in D(0, s)$ for which $\alpha(c)$ is preperiodic under f_c .

Summary of the Proof so far

For each critical point $\alpha = \alpha(c)$ of f_c :

After coordinate changes, we have

$$\alpha(c) \overset{f_c^N}{\longmapsto} 0 \in D(0,1) \overset{f_c^N}{\longrightarrow} D(0,1)$$

- Let $\lambda_0 := (f_0^N)'(0)$. Two cases: $|\lambda_0|_p < 1$ (attracting) or $|\lambda_0|_p = 1$ (indifferent).
- In both cases, we showed either:
 - here are some $n > m \ge 0$ so that $f_c^n(\alpha(c)) = f_c^m(\alpha(c))$ for all $c \in D(0, S)$, or
 - for every 0 < s < S, there are only finitely many $c \in D(0,s)$ for which $\alpha(c)$ and all critical points in D(0,1) are preperiodic.

Conclusion of the Proof

Applying the preceding arguments to each critical point $\alpha_i(c)$ of $f_c(z)$, then either

- 1. For every $i=1,\ldots,2d-2$, there are integers $n_i>m_i\geq 0$ such that $f_c^{n_i}(\alpha_i(t))=f_c^{m_i}(\alpha_i(c))$ for all $c\in D(0,S)$, or
- 2. For every 0 < s < S, there are only finitely many $c \in D(0, s)$ for which f_c is PCF.

If (1) happens, Thurston Rigidity (Douady and Hubbard, 1993) says that either

- \triangleright Every f_c is Lattès, or
- ▶ f_c is conjugate to $f_{c'}$ for uncountably many distinct c, c', and hence for all $c, c' \in D(0, S)$.
- (2) and the two above possibilities for (1) are the three outcomes stated in the Theorem. QED

Stability Condition and Main Theorem, again

Stability Condition: for all $c \in D(b, S)$,

- ▶ $f_c(z) \in \mathbb{C}_p(z)$ with $deg(f_c) = d$,
- ▶ the critical points of f_c are $\alpha_1(c), \ldots, \alpha_{2d-2}(c)$, and
- ▶ for each i = 1, ..., 2d 2, there are open disks $U_{i,j}$ with

$$\alpha_i(c) \in U_{i,0} \stackrel{f_c}{\rightarrow} U_{i,1} \stackrel{f_c}{\rightarrow} U_{i,2} \stackrel{f_c}{\rightarrow} \cdots \stackrel{f_c}{\rightarrow} U_{i,N_i}$$

with $U_{i,N_i} \subseteq U_{i,M_i}$, where $N_i > M_i \ge 0$.

Theorem (B-Ih)

Let $f_c(z)$ be a one-parameter family satisfying the stability condition on D(b, S). Then either

- 1. f_c is conjugate to f_b for all $c \in D(b, S)$, or
- 2. f_c is flexible Lattès for all $c \in D(b, S)$, or
- 3. for any 0 < s < S, there are only finitely many $c \in D(b, s)$ for which f_c is PCF.

