The abc Conjecture: An Introduction

Robert L. Benedetto Amherst College

2400 + 1 = 2401

Fermat's Last Theorem. (Wiles, 1995)

Theorem

Given $n \ge 3$ integer, there are no integer solutions to

$$x^n + y^n = z^n$$

with none of x, y, z equal to zero.

Proof:

A little too long to fit into this talk. "QED"

Using Polynomials instead of Integers

Recall: A polynomial f(t) with complex coefficients is a function of the form:

$$f(t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

where every $a_i \in \mathbb{C}$.

e.g.:

$$5 - \pi t + t^{2}$$

$$(14 + 2i) + 17t^{11} - (5 - 3i)t^{38}$$

$$7 + \sqrt{2}i$$

$$0$$

Notation:

$$\mathbb{C}[t] = \{\text{polynomials with coefficients in } \mathbb{C}\}.$$

Fermat for Polynomials

Theorem

Let $n \geq 3$ be an integer. There are **no** polynomials $f, g, h \in \mathbb{C}[t]$ such that

$$(f(t))^n + (g(t))^n = (h(t))^n$$

except for the cases that:

- at least one of f, g, h is the zero polynomial, or
- f,g,h are all constant, or
- f is a constant times g.

Note: n = 2 has **many** solutions. E.g., for any polynomial f(t),

$$(f^2-1)^2+(2f)^2=(f^2+1)^2.$$

Review of Polynomials and Degrees

To say f = g means: for **every** $t_0 \in \mathbb{C}$, $f(t_0) = g(t_0)$. Equivalently, f and g have exactly the same coefficients.

Writing
$$f(t)=a_dt^d+\cdots+a_0$$
 with $a_d\neq 0$, the integer $d=d_f=\deg(f)$

is the **degree** of f.

Note:

- ▶ If $f = a_0$ is a nonzero constant, then deg(f) = 0.
- ▶ If f = 0 is the zero polynomial, we either don't talk about its degree or say that $deg(f) = -\infty$.
- ▶ If f is not a constant, then deg(f') = deg(f) 1.

Roots of Polynomials

Any nonzero polynomial

$$f = a_d t^d + \dots + a_0$$

(with $a_d \neq 0$) has exactly d roots

$$\alpha_1, \alpha_2, \ldots, \alpha_d \in \mathbb{C},$$

and in particular,

$$f(t) = a_d \cdot (t - \alpha_1) \cdot (t - \alpha_2) \cdot \cdots \cdot (t - \alpha_d).$$

Furthermore, the above factorization of f is **unique**.

Examples of Roots of Polynomials

Examples.

$$f(t) = t^3 - 3t^2 + 2t = t(t - 1)(t - 2)$$

$$g(t) = t^2 + 4 = (t - 2i)(t + 2i)$$

$$h(t) = 2t^3 - 3t^2 + 1 = 2\left(t + \frac{1}{2}\right)(t - 1)(t - 1)$$

$$= 2\left(t + \frac{1}{2}\right)(t - 1)^2$$

Counting Roots

Example: Are there numbers $a,b\in\mathbb{C}$ so that

$$(t+1)^5(t+2)^4(t^3+at-3)=(t-2)^3(t-1)^2(t^7+bt+6)$$
?

Answer: NO!

We could multiply it out, but here's an easier way:

If the above polynomials were equal, then they would be a single polynomial of degree 12.

This polynomial has as roots at least the following:

- ▶ -1, appearing 5 times,
- \triangleright -2, appearing 4 times,
- 2, appearing 3 times
- ▶ 1, appearing 2 times

That's already 5 + 4 + 3 + 2 = 14 roots for a degree 12 polynomial, which is impossible.

Roots and Derivatives

Suppose $f \in \mathbb{C}[t]$ and α is a root of f, appearing with multiplicity $r \geq 1$; that is,

$$f(t) = (t - \alpha)^r g(t)$$

for some polynomial g(t). Then

$$f'(t) = r(t - \alpha)^{r-1}g(t) + (t - \alpha)^r g'(t)$$

$$= (t - \alpha)^{r-1} \underbrace{\left[rg(t) + (t - \alpha)g'(t)\right]}_{\text{some polynomial}}.$$

That means the polynomial f' has α as a root with multiplicity (at least) r-1.

The Radical of a Polynomial

Definition

Given a polynomial

$$f(t) = A(t - \alpha_1)^{r_1}(t - \alpha_2)^{r_2} \cdots (t - \alpha_k)^{r_k},$$

with $\alpha_1, \ldots, \alpha_k$ distinct, the **radical** of f is the polynomial

$$rad(f) = (t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_k).$$

Note:

- 1. If f is not constant, then $1 \leq \deg(\operatorname{rad}(f)) \leq \deg(f)$.
- 2. The number of **distinct** roots of f is k = deg(rad(f)).
- 3. $r_1 + r_2 + \cdots + r_k = \deg(f)$.

abc for Polynomials

Theorem (Stothers, Mason, early 1980s)

Let a(t), b(t), c(t) be nonzero polynomials, not all constant, such that

- 1. a + b = c, and
- 2. a and b have no common roots.

Then

$$\max\{\deg(a),\deg(b),\deg(c)\}\leq -1+\deg(\operatorname{rad}(abc)).$$

That is:

The largest degree of a, b, and c is **strictly less than** the **total** number of **distinct** roots of a, b, and c.

Example 1

$$\underbrace{t^3(5t+2)}_{a(t)} + \underbrace{(3t+1)^3(t+1)}_{b(t)} = \underbrace{(2t+1)^3(4t+1)}_{c(t)}$$

Example 2

$$\underbrace{t^{17}}_{a(t)} + \underbrace{1}_{b(t)} = \underbrace{t^{17} + 1}_{c(t)}$$

$$\max\{\deg a, \deg b, \deg c\} = \deg a = \deg c = 17$$

$$\operatorname{rad}(abc) = t(t^{17} + 1),$$
 so
$$\operatorname{deg}(\operatorname{rad}(abc)) = 18, \text{ and } 17 \le (-1) + 18.$$

Example 3

$$\underbrace{(t^8+1)}_{a(t)} + \underbrace{(-t^8+1)}_{b(t)} = \underbrace{2}_{c(t)}$$

$$\max\{\deg a, \deg b, \deg c\} = \deg a = \deg b = 8$$

$$\operatorname{rad}(abc) = t^{16} - 1,$$
 so
$$\operatorname{deg}(\operatorname{rad}(abc)) = 16, \text{ and } 8 \le (-1) + 16.$$

Proving abc for Polynomials: Setup

Without loss: The largest degree is $deg(a) = deg(b) = d \ge 1$.

Let $d_c = \deg(c)$. Then $0 \le d_c \le d$.

Factor the polynomials as:

$$a(t) = A(t - \alpha_1)^{q_1} (t - \alpha_2)^{q_2} \cdots (t - \alpha_k)^{q_k}$$

$$b(t) = B(t - \beta_1)^{r_1} (t - \beta_2)^{r_2} \cdots (t - \beta_\ell)^{r_\ell}$$

$$c(t) = C(t - \gamma_1)^{s_1} (t - \gamma_2)^{s_2} \cdots (t - \gamma_m)^{s_m}$$

By hypothesis, note that:

$$ightharpoonup s_1 + \cdots + s_m = d_c$$

$$ightharpoonup \alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_\ell, \gamma_1, \ldots, \gamma_m$$
 are all distinct.

Let
$$N = k + \ell + m = \deg(\operatorname{rad}(abc))$$
.

Our goal is to show: $d \le N - 1$.

Proof of Fermat for Polynomials

Suppose $n \ge 3$ and $f^n + g^n = h^n$, where

- ightharpoonup f, g, h are nonzero, and
- ▶ f is not a constant multiple of g.

If f and g have a common root $a \in \mathbb{C}$, then so does h; so divide both sides by $(x - a)^n$.

Repeat until f and g have no common roots.

Rearrange so that $\deg f = d \ge \deg(g), \deg(h)$. By abc Theorem,

$$\underbrace{\deg(f^n)}_{nd} \leq -1 + \underbrace{\left(\# \text{distinct roots of } f^n g^n h^n\right)}_{\leq \deg(fgh) \leq 3d}.$$

So $nd \le 3d - 1$, i.e., $(n - 3)d \le -1$. Contradiction!

QED

Back to Integers

Given a positive integer $n \ge 1$, what's the analogue of the "degree" of n?

Idea:

$$2548 = 2 \cdot 10^3 + 5 \cdot 10^2 + 4 \cdot 10 + 8$$

vs.
$$2 \cdot t^3 + 5 \cdot t^2 + 4 \cdot t + 8$$

So "degree" is roughly analogous to "number of digits", which means (roughly) $\log |n|$.

Another parallel:

$$\deg(fg) = \deg(f) + \deg(g)$$

$$\log |mn| = \log |m| + \log |n|$$

What about the radical of an integer?

Polynomials have factorizations

$$f(t) = A(t - \alpha_1)^{r_1}(t - \alpha_2)^{r_2} \cdots (t - \alpha_k)^{r_k},$$

and the radical of f is

$$rad(f) = (t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_k).$$

Similarly, integers have prime factorizations

$$n=\pm p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k},$$
 so

Definition

Let $n \in \mathbb{Z}$ be a nonzero integer $n = \pm p_1^{r_1} p_2^{r_2} \cdots p_{\nu}^{r_k}$.

The **radical** of *n* is $rad(n) = p_1p_2 \cdots p_k$.

An Analogous Conjecture for Integers

Conjecture

There is a constant $C \in \mathbb{R}$ with the following property: For all positive integers $a, b, c \in \mathbb{N}$ satisfying:

- 1. a + b = c, and
- 2. a and b have no common prime factors, we have

$$\underbrace{\max\{\log a, \log b, \log c\}}_{\log c} \le C + \log (\operatorname{rad}(abc)).$$

[**Recall:** If
$$abc = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$$
, then $rad(abc) = p_1 p_2 \cdots p_k$.]

But: this conjecture is FALSE!!!!

Preparations for a Counterexample

Lemma

For any integer $j \ge 0$, $3^{(2^j)} - 1$ is divisible by 2^{j+1} .

Proof of Lemma: By induction on j:

For j = 0, $3^1 - 1 = 2$ is divisible by $2^{0+1} = 2$.

If the statement is true for some $j \ge 0$, then

$$3^{2^{j+1}}-1=\underbrace{\left(3^{2^j}-1
ight)}_{ ext{divisible by }2^{j+1}}\cdot \underbrace{\left(3^{2^j}+1
ight)}_{ ext{divisible by }2}.$$

Thus, $3^{2^{j+1}}$ is divisible by 2^{j+2} .

QED Lemma

A Counterexample to the Conjecture

For each
$$j \ge 0$$
, write $\underbrace{2^{j+1}n_j}_{a_j} + \underbrace{1}_{b_j} = \underbrace{3^{2^j}}_{C_j}$, for some $n_j \in \mathbb{N}$.

Note (for later) that $n_j < 3^{2^j}/2^{j+1}$. We compute:

$$\log \max\{a_j, b_j, c_j\} = \log (3^{2^j}) = 2^j \log 3, \quad \text{and}$$
$$\log \operatorname{rad} (a_j b_j c_j) \le \log (2 \cdot 3 \cdot n_j) = \log 6 + \log (n_j)$$
$$\le \log 6 + \log (3^{2^j}) - \log (2^{j+1})$$
$$= \log 6 + 2^j \log 3 - (j+1) \log 2.$$

So if the conjecture were true, we would have

$$2^{j} \log 3 \le C + \log 6 + 2^{j} \log 3 - (j+1) \log 2$$
,

i.e., $(j+1) \log 2 \le C + \log 6$ for **all** $j \ge 0$, which is impossible.

The abc Conjecture

Conjecture (David Masser and Joseph Oesterlé, 1985.)

For any $\varepsilon > 0$, there is a constant $C_{\varepsilon} \in \mathbb{R}$ with the following property.

For all positive integers $a,b,c\in\mathbb{N}$ satisfying

- 1. a+b=c, and
- 2. a and b have no common prime factors,

we have

$$\log c \leq C_{\varepsilon} + (1+\varepsilon)\log(\operatorname{rad}(abc)).$$

abc ratios

Given a, b, c as in the conjecture, let

$$R(a,b,c) = \frac{\log c}{\log \operatorname{rad}(abc)},$$

called the "abc ratio" or the "quality" of the triple (a, b, c).

Idea: Intuitively, the *abc* conjecture says R(a, b, c) cannot be much bigger than 1.

More precisely, it says that for any $\varepsilon > 0$, there are only **finitely many** triples (a,b,c) for which $R(a,b,c) > 1 + \varepsilon$.

Examples of abc ratios

"Most" of the time, R(a, b, c) is a lot smaller than 1:

• 18384 + 73295 = 91679 is $2^4 \cdot 3 \cdot 383 + 5 \cdot 107 \cdot 137 = 7^2 \cdot 1871$, so

$$R = \frac{\log(91679)}{\log(2 \cdot 3 \cdot 5 \cdot 7 \cdot 107 \cdot 137 \cdot 383 \cdot 1871)} = 0.40201\dots$$

 $\bullet \ 5^{12} + 3^{16} = 287187346 = 2 \cdot 137 \cdot 1048129 \ \text{has}$

$$R = \frac{\log(287187346)}{\log(2 \cdot 3 \cdot 5 \cdot 137 \cdot 1048129)} = 0.877926...$$

• But 1 + 2400 = 2401 is $1 + 2^5 \cdot 3 \cdot 5^2 = 7^4$, so

$$R = \frac{\log(2401)}{\log(2 \cdot 3 \cdot 5 \cdot 7)} = 1.455673...,$$

which is number 36 on the all-time worst (best?) list of known (a, b, c)-triples.

Top ten worst known (a, b, c)-triples:

а	Ь	С	R
2	$3^{10} \cdot 109$	23 ⁵	1.62991
11 ²	$3^2 \cdot 5^6 \cdot 7^3$	$2^{21} \cdot 23$	1.62599
19 · 1307	$7 \cdot 29^2 \cdot 31^8$	$2^8 \cdot 3^{22} \cdot 5^4$	1.62349
283	$5^{11} \cdot 13^2$	$2^8 \cdot 3^8 \cdot 17^3$	1.58075
1	$2\cdot 3^7$	5 ⁴ · 7	1.56788
7^3	3 ¹⁰	$2^{11} \cdot 29$	1.54707
$7^2 \cdot 41^2 \cdot 311^3$	$11^{16} \cdot 13^2 \cdot 79$	$2 \cdot 3^3 \cdot 5^{23} \cdot 953$	1.54443
5 ³	$2^9 \cdot 3^{17} \cdot 13^2$	$11^5 \cdot 17 \cdot 31^3 \cdot 137$	1.53671
$13 \cdot 19^{6}$	$2^{30} \cdot 5$	$3^{13}\cdot 11^2\cdot 31$	1.52699
$3^{18} \cdot 23 \cdot 2269$	$17^3 \cdot 29 \cdot 31^8$	$2^{10} \cdot 5^2 \cdot 7^{15}$	1.52216

For more information

For a list of all 237 known (a, b, c) triples with R > 1.4, see Bart de Smit's list at

http://www.math.leidenuniv.nl/~desmit/abc/index.php?set=2

For more on the abc conjecture, see Abderrahmane Nitaj's page at:

http://www.math.unicaen.fr/~nitaj/abc.html