

Mathematics Research Experience for Undergraduates at Amherst College, Summer 2026

Description: Prof. Rob Benedetto invites two Amherst College students to work with him for **8 weeks** in Summer 2026 on a Mathematics REU (Research Experience for Undergraduates) project, on certain topics in **Arithmetic Dynamics**, a subfield of Number Theory.

Dates: Monday, June 8 to Friday, July 31. The first two weeks will be spent learning relevant background material, and the rest will be devoted to research.

Funding and Housing: Participants will be paid a **stipend of \$700 per week** for the 8 weeks (\$5,600 total), plus funds to pay for the cost of a dorm room and meal plan on campus. Participants must apply for Amherst College housing themselves.

Prerequisites: Participants must have taken, and demonstrated strong ability in, **Math 350** (Groups, Rings and Fields) before the start of the project. **Preference will be given to students who have also done well in other courses in pure mathematics, especially at the 300-level or higher.**

Eligibility: This project will be funded by the National Science Foundation (NSF). NSF funding rules for REU projects state that participants must be **US citizens or permanent residents**, and must be **current undergraduate students** (e.g., no 2026 graduates). The program is a full-time commitment (40 hours per week).

To apply: Do **BOTH** of the following:

1. Apply to job posting **JR6652** (Summer Math Researcher) on Workday, and
2. Email Prof. Benedetto at **rlbenedetto@amherst.edu** providing both:
 - (a) An unofficial transcript (a PDF of which you should be able to obtain via Workday)
 - (b) The names of two Amherst math professors (or former Amherst math professors) you have taken courses from or worked closely with. (No rec letters required.)

Application Deadline: Friday, February 13, 2026.

Accepted applicants will have until Friday, March 6, 2026 to accept or decline their offers.

Topic: Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $d \geq 2$ with rational coefficients, and let $a \in \mathbb{Q}$. What is the smallest field that contains all d points of the inverse image $f^{-1}(a)$? What about the d^2 points in the second inverse image $f^{-2}(a)$? And in general, what can we say about the smallest field K_n containing all d^n points of $f^{-n}(a)$? One key object of interest is the *Galois group* G_n associated with the field K_n . The group G_n permutes the d^n elements of $f^{-n}(a)$. A central aim of this project will be to understand how G_n acts on these d^n elements in various special cases.