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Abstract. We present a p-adic and non-archimedean version of the Ahlfors’ Five
Islands Theorem for meromorphic functions, extending an earlier theorem of the author
for holomorphic functions. In the non-archimedean setting, the theorem requires only
four islands, with explicit constants. We present examples to show that the constants
are sharp and that other hypotheses of the theorem cannot be removed.

1. Introduction

In the 1930s, Ahlfors proposed his theory of covering surfaces [2] in complex analysis
as an analogue of Nevanlinna theory for domains, rather than for points. One of the key
theorems in the subject is the Five Islands Theorem:

Theorem. (Ahlfors’ Complex Five Islands Theorem) Let U1, . . . , U5 be simply connected

domains in the Riemann sphere with mutually disjoint closures. Then there is a constant

h = h(U1, . . . , U5) > 0 with the following property: Let f be a complex meromorphic

function on the disk |z| < 1, and suppose that there is some r ∈ (0, 1) with

(1.1) SC(f, r) ≥ h · LC(f, r).

Then there is a simply connected domain U contained in the disk |z| < r such that f is

one-to-one on U and f(U) = Ui for some 1 ≤ i ≤ 5.

Similar results hold for holomorphic functions, with only three islands Ui ⊆ C required.
Here, SC(f, r) and LC(f, r) (the mean covering number and relative boundary length,
respectively) are certain real quantities describing the image of f on the open disk
|z| < r. By the work of Dufresnoy [17], condition (1.1) may be replaced by a condition

of the form f#(0) > h̃, where f# is the spherical derivative of f , and h̃ is, like h, a
constant which depends only on the domains U1, . . . , U5. In 1998, Bergweiler [7] proved
the Five Islands Theorem without the theory of covering surfaces by using a lemma
of Zalcman [33], some Nevanlinna theory, and quasiconformal perturbations. See [22],
Chapters 5–6, for more details on the theory of covering surfaces.
Initially, the Five Islands Theorem was used mainly in complex function theory. Then,

in 1968, Baker [3] applied it to complex dynamics, proving that the Julia set of a complex
entire function is the closure of the set of repelling periodic points. (The usual well known
proofs of repelling density for rational functions do not extend to entire functions.)
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In this paper, we will consider non-archimedean fields. Recall that a non-archimedean
field is a field K equipped with a non-trivial absolute value | · | satisfying the ultrametric
triangle inequality |x+y| ≤ max{|x|, |y|} for all x, y ∈ K. We set the following notation.

K a complete, algebraically closed non-archimedean field with
absolute value | · |

O the ring of integers {x ∈ K : |x| ≤ 1} of K
k the residue field of K

For example, K could be Cp, the completion of an algebraic closure of Qp, the field
of p-adic rationals. Alternately, K could be the completion of an algebraic closure of
F((t)), the field of formal Laurent series with coefficients in an arbitrary field F. We
refer the reader to [19, 30] for treatises on non-archimedean analysis.
Recall that the residue field k is defined to be O/M, where M is the maximal ideal

{x ∈ K : |x| < 1} of O. If the original field K has positive characteristic, then
char k = charK; however, if charK = 0, then char k could be either zero or any prime
p > 0. The equal characteristic cases occurs for function fields; the different, or mixed,
characteristic case occurs for K = Cp.
There have been numerous studies in recent decades of non-archimedean versions

of Nevanlinna theory. In 1971, Adams and Straus [1] proved some non-archimedean
Nevanlinna-style results using methods much simpler than a full Nevanlinna theory.
More recently, a number of authors have developed a broader non-archimedean Nevan-
linna theory, including analogues of the First and Second Main Theorems; see [14] or
[24] for expositions, and [12, 13, 15, 16, 25, 31] for some of the original papers.
At the same time, there has also been a growing interest in the dynamics of non-

archimedean rational and entire functions; see, for example, [4, 5, 27, 28] and Section 7
of [32], or [10] for an expository introduction to the p-adic case. Although many of
the fundamental results of complex dynamics have analogues in the non-archimedean
setting, the question of non-archimedean repelling density remains open, even in the case
of rational functions, at least in the case of positive residue characteristic. There have
been some partial results: Hsia [23] has shown that the Julia set of a rational function
is contained in the closure of all periodic points, and Bézivin [9] has proven repelling
density if there is at least one repelling periodic point. However, as discussed in [6], there
are serious obstacles to extending either result to prove repelling density completely.
Motivated by Baker’s complex result on repelling density and the more recent develop-

ments in non-archimedean Nevanlinna theory, the author presented a non-archimedean
version of Ahlfors’ Islands Theorem for holomorphic functions in [6]. In that case, only
two islands, rather than three, were required. However, an extra hypothesis was also
needed, essentially stating that the analogue of LC(f, r) is at some point larger than a
constant which depends on the two islands. In this paper, we continue those investiga-
tions by presenting an analogue of the Islands Theorem for meromorphic functions in
Theorem 7.2. We envisage that these non-archimedean islands theorems should be part
of a non-archimedean theory of Ahlfors’ covering surfaces that is yet to be developed.
We give an abbreviated statement of our result here.

Main Theorem. (Non-archimedean Meromorphic Four Islands Theorem)
Let U1, U2, U3, U4 ⊆ K ∪ {∞} be four disjoint open disks. Let ν1 be a Berkovich point

such that no residue class of ν1 intersects more than two of U1, U2, U3, U4. Then there are
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real constants C1, C2 ≥ 0 depending only on K and on U1, U2, U3, U4 with the following

property.

Let f be a meromorphic function on D(0, 1) = {z ∈ K : |z| < 1} such that f#(0) > C1

and, for any point ν ∈ D(0, 1) in the open Berkovich disk such that f∗(ν) = ν1, we have

δ(f, ν) ≥ C2. Then there is an open disk U ⊆ D(0, 1) such that f is one-to-one on U
and f(U) = Ui for some i = 1, 2, 3, 4.

Here, f# is a non-archimedean version of the spherical derivative (see Definition 3.2
and equation (4.3)), and δ(f, ν) is a measure of distortion related to the non-archimedean
relative boundary length (see equations (6.1) and (6.2)). The notation D(0, 1), P1(K),
and f∗(ν) concerns the theory of Berkovich spaces and will be defined in Section 4. The
full statement of the result, Theorem 7.2, includes precise formulas for the constants C1

and C2 (unlike Ahlfors’ results, which did not explicitly describe h).
In Section 2, we will recall some basic facts about the non-archimedean projective line

P1(K). In Section 3 we will review some standard results about meromorphic functions
on non-archimedean disks. Section 4 is a summary (without proofs) of the necessary
elements of the Berkovich theory. Then, in Section 5, we will present a few relevant
lemmas on the Berkovich projective line. In Section 6, we will study some particular
functions from Berkovich spaces to R, including the quantity δ(f, ν). Section 7 is devoted
to the statement and proof of the main theorem and a corollary. Finally, we will present
some examples and address the sharpness of Theorem 7.2 in Section 8.

2. Non-archimedean disks and the projective line

For a ∈ K and r > 0, we will denote by D(a, r) and D(a, r) the open disk and closed
disk (respectively) of radius r about a inK. If r ∈ |K×|, then D(a, r) ( D(a, r), whereas
the two sets coincide if r 6∈ |K×|. All disks in K are both open and closed as topological
sets, but we keep the labels “open disk” and “closed disk” because the two can behave
differently under the action of holomorphic and meromorphic functions.
By ultrametricity, any point of a disk is a center; but becauseK is algebraically closed,

the radius is well defined and is equal to the diameter. That is, D(a, r) = D(b, s) if and
only if r = s and b ∈ D(a, r); the analogous statement also holds for closed disks.
Let P1(K) denote the projective line over K, with points represented in homogeneous

coordinates by [x, y], for (x, y) ∈ K ×K \ {(0, 0)}. We will usually identify P1(K) with
K ∪ {∞} by taking [x, y] to z = x/y, with [1, 0] corresponding to z = ∞.
The metric on K induces a standard spherical metric on P1(K), given by

∆(P1, P2) =
|x1y2 − x2y1|

max{|x1|, |y1|}max{|x2|, |y2|}
,

where Pi = [xi, yi]. Clearly 0 ≤ ∆(P1, P2) ≤ 1. In affine coordinates,

∆(z1, z2) =
|z1 − z2|

max{1, |z1|}max{1, |z2|}
.

Note that for z1, z2 ∈ O, we have ∆(z1, z2) = |z1 − z2|. The topology on K induced by
∆ is exactly the same as that induced by | · |.
The group PGL(2, K) acts by linear fractional transformations on P1(K). As on the

Riemann sphere, given any six points P1, P2, P3, Q1, Q2, Q3 ∈ P1(K), there is a unique
η ∈ PGL(2, K) such that η(Pi) = Qi for all i = 1, 2, 3. Of course, this map η need
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not preserve distances. On the other hand, the subgroup PGL(2,O) of transformations
z 7→ (az + b)/(cz + d) with a, b, c, d ∈ O and |ad − bc| = 1 is distance-preserving with
respect to ∆. (See [6], Section 1, for example.)
A disk V ⊆ P1(K) is defined to be either a disk in K in the usual sense or the

complement in P1(K) of a disk in K. Equivalently, V is a disk in P1(K) if and only if it
is the image under some η ∈ PGL(2, K) of a disk in K. (This is not the same as saying
that V is a disk with respect to the spherical metric ∆.) We say V is open (respectively,
closed) if it is either an open (respectively, closed) disk in K or the complement of a
closed (respectively, open) disk in K.

3. Holomorphic and meromorphic functions on disks

We now summarize the relevant portions of the well known theory of homomorphic
and meromorphic functions on disks. Non-archimedean analysis on more general subsets
ofK has been described in a number of contexts; see, for example, [11, 19, 20, 21, 29], and
the more accessible exposition in simpler cases in Chapter VI of [30]. For an abbreviated
survey specific to disks, with most proofs included, see [6], Section 2.

Definition 3.1. Let U ⊆ K be a disk.

a. Let a ∈ U and let g : U → K. We say g is holomorphic on U if we can write

g(z) =
∞
∑

i=0

ci(z − a)i ∈ K[[z − a]]

as a power series that converges to g(z) for all z ∈ U .
b. Let f : U → P1(K). We say f is meromorphic on U if f is continuous on U ,
and if we can write f in homogeneous coordinates as

f(z) = [g(z), h(z)]

for all z in some dense subset of U , where g and h are holomorphic on U .

Thus, a holomorphic function is not just locally analytic but rigid analytic, in that its
defining power series converges on the whole disk. Holomorphicity is well defined, in the
sense that if a, b ∈ U , and if g can be written as a convergent power series centered at
a, then g can also be written as a convergent power series centered at b. Naturally, any
holomorphic function f is also meromorphic, by choosing g = f and h = 1. Conversely,
any meromorphic function which never takes on the value ∞ is in fact holomorphic.
Intuitively, a meromorphic function is simply the quotient of two holomorphic func-

tions, as in complex analysis. The technical “dense subset” condition in Definition 3.1 is
required only because the holomorphic functions g and h may have common zeros. As
observed in [26], it may not be possible to choose g and h to remove all common zeros if
U is an open disk. Fortunately, this technicality will not affect us, because we will not
be concerned with any specific representation g/h of a given meromorphic function f .
Derivatives of holomorphic and meromorphic functions are defined in the same way as

in real and complex analysis, and they satisfy all the usual algebraic rules. In particular,
if f(z) is holomorphic or meromorphic on a disk U , then so is f ′(z).
If f is holomorphic on a disk U , and if U ′ ( U is a smaller disk, then f(U ′) is a disk.

Moreover, f(U ′) is open (respectively, closed) if and only if U ′ is open (respectively,
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closed); see, for example, [6], Lemma 2.2. In addition, any two points in f(U ′) have the
same number of preimages in U ′, counting multiplicity.
Similarly, if f is meromorphic on a disk U ⊆ K, and if U ′ ( U is a strictly smaller disk,

then f(U ′) is either all of P1(K) or else a disk V in P1(K); in the latter case, V is open
(respectively, closed) if and only if U ′ is. In particular, in light of the Riemann mapping
theorem, the appropriate analogue of a simply connected domain in the Riemann sphere
is a disk in P1(K).

Definition 3.2. Let U ⊆ K be a disk, and let f : U → P1(K) be a meromorphic
function. Let a ∈ U . If f(a) 6= ∞, the spherical derivative of f at a is

f#(a) =
|f ′(a)|

max{1, |f(a)|2}
.

If f(a) = ∞, then we set f#(a) = (1/f)#(a).

Note that f# takes values in [0,∞) ⊆ R, not in K. The reader may verify that

f#(a) = lim
z→a

∆(f(z), f(a))

|z − a|
.

In particular, if η ∈ PGL(2,O) and f is meromorphic, then (η ◦ f)# = f#, because η
preserves ∆.

4. The Berkovich disk and projective line

Our discussion of meromorphic functions on D(0, 1) will involve their action on larger
spaces defined by Berkovich. We refer the reader to his papers, especially [8], for back-
ground on general Berkovich spaces and for proofs of most of their basic properties. For
our purposes, the reader may find the exposition in [32] more useful, as it is specific to
the case of disks and the projective line, which are all we need here. The same space for
the projective line was independently discovered later by Rivera-Letelier [27, 28]; the set
we will call P1(K) is called H∪ P1(K) in his notation. Related seminorm constructions
also appeared in earlier papers, such as [19], but Berkovich’s more complete theory seems
to be the proper language for a meromorphic islands theorem.
For a ∈ K and r ∈ |K×|, the Berkovich disk D(a, r) associated to D(a, r) is a topo-

logical space into which D(a, r) embeds naturally, but with extra points added in such
a way that the resulting space is path-connected, compact, and Hausdorff. Most (or
at least, the most useful) of these extra points correspond in a natural way to disks
contained in D(a, r).
More specifically, let A be the ring of all holomorphic functions on D(a, r), and for

any disk D(b, s) ⊆ D(a, r), define the norm ν(b, s) = ‖ · ‖ν(b,s) on A by

(4.1) ‖f‖ν(b,s) = sup{|f(x)| : x ∈ D(b, s)} = max{|ci|s
i : i ≥ 0},

where f(z) =
∑

∞

i=0 ci(z − b)i. If s ∈ |K×|, then ‖f‖ν(b,s) can be considered the generic

value of |f(x)| on D(b, s), in the sense that most x ∈ D(b, s) (i.e., all but those in
finitely many open subdisks D(b′, s)) satisfy |f(x)| = ‖f‖ν(b,s). Note that ‖f · g‖ν(b,s) =
‖f‖ν(b,s) · ‖g‖ν(b,s).

Rigorously speaking, the Berkovich disk D(a, r) is defined to be the set of all those
multiplicative seminorms on A which are bounded with respect to ν(a, r). The natural
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topology is the Gel’fond topology, which is the weakest topology such that for every
f ∈ A, the map ν 7→ ‖f‖ν from D(a, r) to R is continuous.
Berkovich classified the points of D(a, r) into four types. Type I are those correspond-

ing to points x ∈ D(a, r), with seminorm given by ‖f‖x = |f(x)|. The norms ν(b, s)
described in equation (4.1) are either type II or type III, if s is in |K×| or not, respec-
tively. Last, there are also type IV points corresponding to infinite decreasing sequences
of nested disks with empty intersection; however, such points can be safely ignored for
our purposes. Indeed, removing the type IV points from D(a, r) leaves a space which is
still path-connected and Hausdorff, though no longer compact.
From the type II and III points, one can begin to see how D(a, r) is path-connected.

For example, if x ∈ K and r, R > 0 are real numbers such that 0 < r < |x| < R, we see
the arrangement of the points 0 and x and the disks D(x, r) and D(0, R) in Figure 1(a).
Bearing this picture in mind, we can see the path in Berkovich space from 0 to ν(x, r)
as follows. Start at the type I point 0, which we can temporarily think of as a disk of
radius s = 0. Increase the radius s through a path of type II and III points of the form
ν(0, s) until we get to radius s = R. Then ν(0, R) = ν(x,R) (since D(0, R) = D(x,R)),
and so we may now consider disks D(x, s) centered at s. Decrease the radius s towards
the new center x until we arrive at ν(x, r), corresponding to the disk D(x, r).
Intuitively, the space D(a, r) looks like a tree branching out from the root point ν(a, r)

with infinitely many branches at every type II point (which are dense in the tree), and
with limbs ending at the type I and type IV points. See Figure 2(a), which shows a few
of the (type II) points of branching, with a few of the branches at each such point; all
of the end points at the bottom are type I points. The infinitely many branches at a
type II point ν(b, s) correspond to the infinitely many open subdisks D(c, s) of D(b, s)
of the same radius, as well as (if s < r) one more branch corresponding to increasing
the radius. The type III points, meanwhile, are interior points with no branching. The

.
0

.
x

D(0,R)

D(x,r)

0

ν(0,r)

ν(0,R)=ν(x,R)

ν(x,r)

(a) (b)

Figure 1. Path from 0 to ν(x, r) in D(0, R).
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topology is slightly weaker than the tree image might suggest at first; for example, the
type I points (at the tips of the branches) are desnse in the full space.
If f is meromorphic on D(a, r) and ν ∈ D(a, r), then we may define ‖f‖ν to be

‖g‖ν/‖h‖ν , where f = g/h for g, h ∈ A. (Note that ‖f‖ν = ∞ if and only if ν = b is
type I and f has a pole at b.) As before, it is appropriate to think of ‖f‖ν(a,r) as the

generic value of |f(x)| for x ∈ D(a, r).
For an open disk D(a, r), we can also associate a Berkovich space D(a, r) by taking the

union (really, the direct limit) of sets D(a, ri), where ri ր r. The resulting space is still
path-connected, Hausdorff, and locally compact, but it is no longer compact. Although
D(0, 1) will be one of our main objects of study, we will understand it by considering
the subspaces D(a, r) described above, for a ∈ D(0, 1) and 0 < r < 1.
We may also define the Berkovich projective line P1(K) by glueing two copies of

D(0, r) (for some r > 1) as follows. A type I point x on one copy with 1/r < |x| < r
is identified with 1/x on the other copy. Meanwhile, a type II or III point ν(b, s) with
1/r < |b| < r is identified with ν(1/b, s/|b|2), since D(1/b, s/|b|2) is the image of D(b, s)
under z 7→ 1/z. The type IV points are glued similarly.
Thus, P1(K) looks like D(0, 1) with an extra copy of the open tree D(0, 1) attached

to the top (i.e., the ∞ end) of the point ν(0, 1). The new top portion contains all points
x of P1(K) with |x| > 1, including ∞, as well as points ν(a, r) with |a| > 1 or r > 1.
Like D(0, 1), the space P1(K) is path-connected, Hausdorff, and compact. For a rough
idea of the space, see Figure 2(b), which highlights the type I points 0, 1,∞, α, for some
α ∈ K with 0 < |α| < 1, as well as numerous type II points, including ν(0, 1) and
ν(0, |α|). As is the case with D(a, r), the space looks like a tree with infinite branching
at a dense set of points along every edge.
Any disk in P1(K) is associated with a unique point (of type II or III) of P1(K).

Indeed, any open or closed disk D(a, r) or D(a, r) or its complement is associated with
the point ν(a, r). Conversely, a type III point ν(a, r) is associated with exactly two
disks, namely D(a, r) = D(a, r) and its complement. Meanwhile, a type II point ν(a, r)

a

ν(a,r)

0

1

α

∞

ν(0,1)

ν(0,|α|)=ν(α,|α|)

(a) (b)

Figure 2. The Berkovich projective line.
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is associated with infinitely many disks: every open disk D(b, r) for b ∈ D(a, r), the
open disk P1(K) \D(a, r), and the (closed) complements of all these open disks. Note,
however, that there is a one-to-one correspondence between type II and III points of
P1(K) and closed disks in K; the point ν(a, r) corresponds to D(a, r).
Viewed another way, a type II point ν(a, r) induces a partition of P1(K) into the

infinitely many open disks D(b, r) contained in D(a, r), along with P1(K) \ D(a, r).
Similarly, a type III point ν(a, r) partitions P1(K) into two disks: D(a, r) and P1(K) \
D(a, r). In each case, we call the disks of the partition the residue classes of ν(a, r).
A point ν1 ∈ P1(K) is type II or III if and only if P1(K) \ {ν1} is not connected. In

that case, the intersections of the various components of P1(K) \ {ν1} with P1(K) (i.e,
the type I points) give precisely the residue classes of ν1 described above.
A meromorphic function f on D(a, r) induces a continuous function f∗ : D(a, r) →

P1(K). A fully rigorous description of f∗ and its properties requires defining general
Berkovich spaces as locally ringed spaces with patches given by general Berkovich affi-
noids. We refer the reader to [8] or to [32], Section 7, for the details; an equally rigorous
description, specific to P1(K) and in a different style, appears in [28], Section 4. We
will now describe f∗ precisely, but we will skip the proofs.
Given f meromorphic on D(a, r) and ν ∈ D(a, r) (or given f meromorphic on D(a, r)

and ν ∈ D(a, r)), the image point f∗(ν) = ‖ · ‖f∗(ν) is the unique point (i.e., seminorm)
in P1(K) such that

(4.2) ‖h‖f∗(ν) = ‖f ◦ h‖ν

for all h ∈ K(z). (Recall that we allow ‖h‖ν to take on the value ∞ if ν is a type I point
and h has a pole at ν.)
Unfortunately, equation (4.2) does not give much immediate insight into what f∗ really

looks like. Following [28], then, we present the following equivalent description.
First, if ν = x is a type I point, then f∗(x) is simply f(x).
Second, if ν = ν(b, s) is a point of type II or III and f is holomorphic, we know

from Section 3 that f(D(b, s)) is an open disk D(f(b), σ). Then f∗(ν(b, s)) is simply
ν(f(b), σ). More generally, if f is meromorphic, it can be shown that there is a radius
s0 < s such that for all s′ with s0 < s′ < s, the image f(V (s′)) of the annulus V (s′) =
{x ∈ K : s′ < |z − b| < s} is itself an annulus of the form

{y ∈ K : σ′ < |z − β| < σ} or {y ∈ K : σ < |z − β| < σ′},

where σ′ varies with s′ but β and σ are independent of s′. Then it turns out that

f∗(ν(b, s)) = ν(β, σ).

It follows quickly from equation (4.2) that f∗ is the unique continuous extension of f to
Berkovich space. In particular, if f(D(a, r)) = D(b, s), then f∗(D(a, r)) = D(b, s), with
the analogous statement also holding for open disks or if the image is P1(K). Moreover,
if f is a nonconstant meromorphic function, then f∗ takes type I points to type I points,
type II points to type II points, and so on.
Given f meromorphic on D(a, r), we can extend f# from the type I points to all of

D(a, r) by setting

(4.3) f#(ν) =
‖f ′‖ν

max{1, ‖f‖2ν}
.
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Once again, it is easy to show that if η ∈ PGL(2,O), then (η ◦ f)#(ν) = f#(ν).

Definition 4.1. Given a point ν(a, ρ) ∈ P1(K) of type II or III, define

(4.4) r(ν(a, ρ)) =
ρ

max{1, ρ2, |a|2}

to be the spherical radius of ν(a, ρ).

In fact, r(ν) is simply the diameter, with respect to the spherical metric ∆, of
the smallest-diameter residue class of ν. For example, if D(a, ρ) ⊆ D(0, 1), then
r(ν(a, ρ)) = ρ is the usual radius of the associated disk. We also note that r(ν) is
just exp[−dist(ν, ν(0, 1))], where dist(·, ·) is the metric on P1(K) \P1(K) which appears
in [28], Section 3 as the metric on H and in [32], Section 2 as the “big model” metric.
It is easy to verify that formula (4.4) is independent of the choice of a in D(a, ρ), and
that r ◦ η∗ = r for any η ∈ PGL(2,O).
The reader should be cautioned that r is not a continuous function with respect to

the Gel’fond topology. However, the restriction of r to a path like the one described in
Figure 1 is continuous.

5. Lemmas on the Berkovich projective line

The following lemmas concern the action of a mermorphic function on Berkovich
points and will be needed to prove Theorem 7.2. They are implicit in the standard
references, but we state them explicitly for the convenience of the reader.

Lemma 5.1. Let f be meromorphic and nonconstant on D(0, 1), let x ∈ D(0, 1), let
0 < r < 1, and let ν1 ∈ P1(K). Then there are only finitely many points ν ∈ D(x, r)
such that f∗(ν) = ν1.

Proof. This result follows easily from the machinery of [28], Section 4, but we provide a
direct proof without extra machinery for the convenience of the reader.
Write f = g/h for g and h holomorphic. If ν1 is of type I, then by a change of

coordinates, we may assume ν1 = 0. The conclusion is then well known by the finiteness
of the Weierstrass degree of g on D(x, r) ( D(0, 1); see, for example, [6], Lemma 2.2.
If ν1 is of type II or III, then let a = f(x). There must be a point b ∈ P1(K) such that

a and b lie in different residue classes of ν1. By a change of coordinates, we may assume
a = 0 and b = ∞, so that ν1 = ν(0, R) for some R > 0. By the previous paragraph,
there are only finitely many zeros and poles of f in D(x, r).
If f∗(ν(y, s)) = ν1 for some D(y, s) ⊆ D(x, r), then because f(D(y, s)) is either P1(K)

or a closed disk associated with ν1, there must be a root of f = 0 or f = ∞ in D(y, s).
Thus, any set of disjoint disks D(yi, si) with f∗(ν(yi, si)) = ν1 must be finite, since there
are only finitely many poles or zeros of f in D(x, r), by the previous paragraph.
Meanwhile, if y ∈ D(x, r) and 0 < s1 < s2 < r with f∗(ν(y, si)) = ν1 for i = 1, 2, we

claim that there must be a root y′ of f = 0 or f = ∞ with s1 < |y′ − y| ≤ s2. If not,
then move y to 0 and write the holomorphic functions g, h as g(z) =

∑

∞

j=0 ajz
j and

h(z) =
∑

∞

j=0 bjz
j. Our assumption about the lack of roots implies that one term amz

m

of g and one term bnz
n of h is uniquely maximal in each sum for all s1 < |z| ≤ s2. Thus,

for all such z,
|f(z)− czℓ| < |f(z)|,
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where c = am/bn ∈ K and ℓ = m − n ∈ Z. Since f∗(ν(y, s1)) = f∗(ν(y, s2)) = ν(0, R),
we must have |czℓ| = R for all such z, which implies that ℓ = 0 and |c| = R. In that
case, however, |f(z)−c| < R for all such z, meaning in particular that |f(z)−c| < R for
all |z| = s2. Then f∗(ν(0, s2)) 6= ν(0, R), which is a contradiction and proves our claim.
Thus, any chain D(y1, s1) ) D(y2, s2) ) · · · of disks with f∗(ν(yi, si)) = ν1 must be

finite, or else there would be infinitely many poles or zeros of f in D(x, r). Together with
the above fact that only finitely many disjoint disks D(yi, si) can have f∗(ν(yi, si)) = ν1,
the desired finiteness follows.
We will not need to consider the case that ν1 is type IV in this paper, and we leave

the proof of that case to the reader. �

Lemma 5.2. Let f be meromorphic on D(0, 1), let ν ∈ P1(K), and let x, y ∈ D(0, 1)
such that f(x) and f(y) are in different residue classes of ν. Then ν ∈ f∗(D(x, |x−y|)).

Proof. The connected set D(x, |x− y|) contains both x and y, but f(x) and f(y) lie in
different components of P1(K)\{ν}. The result then follows by the continuity of f∗. �

Lemma 5.3. Let f be meromorphic on D(0, 1), let D(x, r) ⊆ D(0, 1), and let ν ∈
P1(K). If ν ∈ f∗(D(x, r)), then there is some r′ < r such that ν ∈ f∗(D(x, r′)).

Proof. As defined in Section 4, we may write D(x, r) as a union of closed Berkovich disks
D(x, ri) for some sequence of radii ri ր r. The lemma then follows immediately. �

6. Functions on Berkovich spaces

Theorem 7.2 and its proof will rely heavily on certain functions from D(0, 1) to [0,∞].
We have already seen three such functions: the (non-continuous) spherical radius func-
tion r(ν) in Definition 4.1; and for any meromorphic function f on D(0, 1), the (con-
tinuous) maps ν 7→ ‖f‖ν and ν 7→ f#(ν). (Note that r takes values values in [0, 1],
f# takes values in [0,∞), and ‖f‖ν attains the value ∞ only at (type I) poles of f .)
Before introducing certain useful hybrids of these functions, we recall some convenient
properties of the map ν 7→ ‖f‖ν .
Given f : D(0, 1) → P1(K) meromorphic, if we fix a point a ∈ D(0, 1), it is common

to define the valuation polygon function Pf,a(t) associated to f by

P (log r) = Pf,a(log r) = − log ‖f‖ν(a,r),

which is is a continuous function from (−∞, 0) to R. In fact:

• P is piecewise linear, with integer slopes, and
• the slope n at any point t0 = log r0 (or just to the right of t0, if P has a corner
at t0) is the number of poles minus the number of zeros of f in D(a, r0).

Put another way, ‖f‖ν(a,r), viewed as a function of r, is continuous and piecewise mono-
mial, with exponent at (or just to the right of) r0 equal to the number of zeros minus
the number of poles of f in D(a, r0).
The proof is standard; see, for example, Section 3 of [29], Section VI.1.6 and following

of [30], or Lemmas 4.4 and 4.5 of [6].
In light of the parenthetical comment in the second property above, for the rest of the

paper we will say that the slope (resp., exponent) of a piecewise linear (resp., piecewise
monomial) function at a corner t0 is the slope (resp., exponent) just to the right of t0.
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Note that since f has only finitely many zeros and poles in D(a,R) for any given
0 < R < 1, there are only finitely many radii r ∈ (0, R] at which the exponent of
‖f‖ν(a,r) can change. Equivalently, for any T ∈ (−∞, 0), Pf,a has corners at only finitely
many points t ∈ (−∞, T ].
Also note that if we fix a ∈ D(0, 1) and let f(z) = z−a, then r(ν(a, ρ)) = ρ = ‖f‖ν(a,ρ)

for all 0 < ρ < 1. Thus, even though ν 7→ r(ν) is not continuous on D(0, 1), it has a
(continuous) valuation polygon associated with any given center a.
We will need three more functions specific to our setting. First, recall that in the

complex case, Ahlfors’ relative boundary length function LC(r) = LC(f, 0, r) is the
length (in the spherical metric) of the image of the circle |z| = r under f . That is,

LC(r) = r

∫ 2π

0

f#(reiθ) dθ

in the complex setting. Viewing the integral as an average value, and recalling that in
our setting, f# generically has value f#(ν(a, r)) on the “circle” |z− a| = r, it is natural
to define, for a meromorphic function f on D(0, 1),

(6.1) L(ν) = L(f, ν) = r(ν) · f#(ν) =
r(ν) · ‖f ′‖ν

max{1, ‖f‖2ν}
,

which is a (non-continuous) function from D(0, 1) to [0,∞). For η ∈ PGL(2,O), note
that L(f, ν) = L(η ◦ f, ν), because f# = (η ◦ f)#.
Second, for f meromorphic on D(0, 1) and ν ∈ D(0, 1) of type II or III, define

(6.2) δ(ν) = δ(f, ν) =
L(f, ν)

r(f∗(ν))
.

(If r(f∗(ν)) = 0 for some ν of type II or III, then f is constant, and we set δ = 0 in
this case.) If we write f∗(ν) = ν(b, ρ), then δ(ν) = r(ν)‖f ′‖ν/ρ. In particular, if f
is holomorphic on D(a, r), and if we write ν = ν(a, r) and b = f(a), then δ(f, ν) =
r‖f ′‖ν/‖f − b‖ν ; indeed, δ appeared in this form in [6].
The ratio δ is a measure of distortion, in the following sense. Intuitively, L(f, ν)

measures the expected spherical radius of f∗(ν) based on the generic value of f# at ν.
Because f# may be smaller than the size of the image would suggest (e.g., zp has small
derivative pzp−1 in residue characteristic p), the actual spherical radius r(f∗(ν)) of the
image may be larger than L. Thus, the smaller the distortion ratio δ, the further the
actual spherical radius is from that predicted by the derivative.
Clearly δ(η ◦ f, ν) = δ(f, ν) for η ∈ PGL(2,O), by the invariance of r and L under η.

The reader may verify that in fact, the same equality holds for any η ∈ PGL(2, K).
We also leave it to the reader to verify that if char k = 0 and f is a nonconstant

meromorphic function, then δ(f, ν) is identically equal to 1.
Third, given a point α ∈ K with α 6= 0, 1 and a meromorphic function f on D(0, 1),

define a real-valued function G on the type II and III points of D(0, 1) by

(6.3) G(ν) = G(f, α, ν) =
(r(ν) · ‖f ′‖ν)

2

‖f‖ν‖f − α‖ν‖f − 1‖ν
.

Like L, the functions δ and G are usually not continuous. However, for a fixed center
a, they have associated valuation polygons with properties analogous to the polygon Pf,a

associated with ‖f‖ν . We will be interested mainly in the valuation polygon associated
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with G, which will involve the following integer-valued quantities. Given a point b ∈
P1(K), then for any closed disk D(a, r) ⊆ D(0, 1), define

Nb(a, r) = number of roots of f = b in D(a, r), and

Nram(a, r) = number of ramification points of f in D(a, r),
(6.4)

where in each case we count points with multiplicity. Note that Nram counts with
multiplicity all points at which f ′ = 0; but it also counts ramification at all multiple
poles. That is, if f = g/h with g and h holomorphic, thenNram counts (with multiplicity)
the zeros of g′h− h′g, less twice the number of common zeros of g and h.
Note also that because r < 1, any nonconstant meromorphic function on D(0, 1) has

only finitely many zeros on D(a, r), and therefore Nb(a, r) is finite (cf. Lemma 5.1).
Similarly, if f ′ is not identically zero (i.e., if f is not constant and not of the form
f(z) = g(zp), where p = charK), then Nram(a, r) is also finite. We can now state the
key properties of the valuation polygon associated with G.

Lemma 6.1. Let f be a meromorphic function on D(0, 1) such that f ′ is not identically

zero. Let α ∈ K \ {0, 1}, and define G, Nb, and Nram as in (6.3) and (6.4). Fix

a ∈ D(0, 1), and define γ : (−∞, 0) → R by

γ(log r) = − logG(ν(a, r)).

Then γ is continuous and piecewise linear with slope at log r equal to

N0(a, r) +Nα(a, r) +N1(a, r) +N∞(a, r)− 2Nram(a, r)− 2.

Proof. If we write f = g/h with g, h holomorphic on D(0, 1), then for ν = ν(a, r) with
D(a, r) ⊆ D(0, 1), we have

G(ν(a, r)) =
(r · ‖g′h− h′g‖ν)

2

‖g‖ν‖g − αh‖ν‖g − h‖ν‖h‖ν
.

The result then follows immediately from the properties of valuation polygons. �

Lemma 6.2. Let f be a meromorphic function on D(0, 1), and let α ∈ D(0, 1)\D(1, 1),
with α 6= 0. Then for any ν ∈ D(0, 1) of type II or III,

δ(f, ν) ≤ 1 and G(f, α, ν) ≤ 1.

Moreover, if no residue class of f∗(ν) contains more than two of 0, 1, α,∞, then

δ(f, ν)2 = G(f, α, ν).

Proof. As the desired inequalities are trivial if f is constant, we may assume that f is
not constant, and therefore that f∗(ν) is also type II or III. Write ν1 = f∗(ν).
For a holomorphic function g on D(0, 1), it is easy to verify that r(ν)‖g′‖ν ≤ ‖g‖ν (see,

for example, Lemma 4.2 of [6]), as the integer coefficients introduced in differentiating
all have absolute value at most one. Thus, writing f = g/h for g, h holomorphic on
D(0, 1), we see that

(6.5) r(ν)‖f ′‖ν =
r(ν)‖g′h− h′g‖ν

‖h‖2ν
≤

‖g‖ν
‖h‖ν

·max

{

r(ν)‖g′‖ν
‖g‖ν

,
r(ν)‖h′‖ν

‖h‖ν

}

≤ ‖f‖ν ,

(using the easily verified fact that ‖·‖ν is ultrametric), so that the same inequality holds
for meromorphic functions as well.
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To prove the bound on δ, choose η ∈ PGL(2,O) such that η∗(ν1) = ν(0, ρ), for
some ρ > 0. Replacing f by η ◦ f (which does not affect δ), we have ‖f‖ν = ρ.
Meanwhile, we may write δ(ν) = r(ν)‖f ′‖ν/ρ, and therefore δ(ν) = r(ν)‖f ′‖ν/‖f‖ν ≤ 1,
by inequality (6.5).
For the bound on G, first suppose that ν1 ∈ D(0, |α|). Then

‖f‖ν < ‖f − α‖ν = |α|, and ‖f − 1‖ν = 1,

so that by inequality (6.5),

G(ν) =
r(ν)2‖f ′‖2ν
|α|‖f‖ν

<
r(ν)2‖f ′‖2ν

‖f‖2ν
≤ 1.

If ν1 lies in either D(α, |α|), D(1, 1), or P1(K) \ D(0, 1), the verification is similar. If
ν1 does not lie in any of these four Berkovich disks, then |α| ≤ ‖f‖ν = ‖f − α‖ν ≤ 1
and ‖f − 1‖ν = 1, so that

G(ν) =
r(ν)2‖f ′‖2ν

‖f‖2ν
≤ 1.

For the final statement of the Lemma, see Figure 3, which shows the only two possible
ways the points in question could be arranged, according to the hypotheses. Figure 3(a)
shows the case that |α| < 1, so that ν1 = ν(0, ρ) for some |α| ≤ ρ ≤ 1. Figure 3(b)
shows the case that |α| = 1, so that (by hypothesis), |α| = |α − 1| = 1, and we must
have ν1 = ν(0, 1). In either case, we have

|α| ≤ ‖f‖ν = ‖f − α‖ν = r(ν1) ≤ 1 = ‖f − 1‖ν ,

so that

δ(ν)2 =
r(ν)2‖f ′‖2ν

‖f‖2ν
= G(ν). �

0

1

α

∞

ν1

ν(0,1)

ν(0,|α|)=ν(α,|α|)

0

1 α

∞

ν1=ν(0,1)=

ν(0,|α|)=ν(α,|α|)

(a) (b)

Figure 3. The two possible arrangements of 0, 1, α,∞.
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Lemma 6.3. Let f be a meromorphic function on D(0, 1), and let α ∈ D(0, 1) \ {0, 1}.
Fix x ∈ D(0, 1) and a radius 0 < R < 1, and suppose that

N0(x,R) +Nα(x,R) +N1(x,R) +N∞(x,R) > 2Nram(x,R),

for Nb and Nram as in (6.4). Then there is a point y ∈ D(x,R) such that for every

r ∈ (0, R],
N0(y, r) +Nα(y, r) +N1(y, r) +N∞(y, r) > 2Nram(y, r).

Proof. Define Ntot(a, r) = N0(a, r) + Nα(a, r) + N1(a, r) + N∞(a, r), and let {yi}
m
i=1 be

the finitely many roots of f = 0, α, 1,∞ in D(x,R).
If the desired conclusion fails, then for each i = 1, . . . ,m, there is some ri ∈ (0, R]

such that Ntot(yi, ri) ≤ 2Nram(yi, ri). If any two of the disks D(yi, ri) intersect, then
one contains the other, and so we may discard the smaller one. We are left with a
finite set {D(y′i, r

′

i)}
ℓ
i=1 of pairwise disjoint disks in D(x,R), each of which satisfies

Ntot(y
′

i, r
′

i) ≤ 2Nram(y
′

i, r
′

i), and which together contain all of the {yi}. Thus,

Ntot(x,R) =
ℓ

∑

i=1

Ntot(y
′

i, r
′

i) ≤ 2
ℓ

∑

i=1

Nram(y
′

i, r
′

i) ≤ 2Nram(x,R),

contradicting the hypotheses and hence proving the Lemma. �

Note that by choosing r sufficiently small in the conclusion of Lemma 6.3, the point
y must satisfy f(y) ∈ {0, 1, α,∞}. Furthermore, f is one-to-one on some small disk
containing y.

7. The Four Islands Theorem

We need the following specialized radius to define the key value µ which will appear
in Theorem 7.2.

Definition 7.1. Let U1, U2, U3, U4 ⊆ P1(K) be four disjoint open disks in P1(K), and
for each i = 1, 2, 3, 4, let Vi be the smallest (closed) disk in P1(K) \ Ui that contains all
three of the other disks Uj. Choose a map ηi ∈ PGL(2, K) that sends Vi to D(0, ri) and
Ui to P1(K) \ D(0, Ri) for some radii 0 < ri ≤ Ri, and let si = ri/Ri. We define the
Ahlfors radius of {U1, U2, U3, U4} to be

s = max{s1, s2, s3, s4}.

By “the smallest disk” Vi, we mean the intersection of all disks V ⊆ P1(K) \ Ui that
contain all three other disks Uj. We leave the verification of the following facts to the
reader. First, this smallest disk Vi is indeed a closed disk. Second, a map ηi exists
with the desired properties, and although neither ηi nor the resulting ri and Ri are
uniquely determined, the ratio si is well-defined. (Indeed, log si is simply the modulus
of the annulus P1(K) \ (Ui ∪Vi), which, as is well known, is easily shown to be invariant
under univalent meromorphic mappings.) Clearly 0 < si ≤ 1. Third, for any map
η ∈ PGL(2, K), the Ahlfors radius of {η(U1), η(U2), η(U3), η(U4)} is the same as that of
{U1, U2, U3, U4}.
If we choose a point ai ∈ Ui for each i = 1, 2, 3, 4, then any three such points can

be moved to {0, 1,∞} by some η ∈ PGL(2, K). The fourth then lands at some point
α ∈ K\{0, 1}. Permuting 0, 1,∞ via combinations of 1/z and 1−z, we may assume that



NON-ARCHIMEDEAN ISLANDS 15

α ∈ D(0, 1) \D(1, 1) with α 6= 0. (Note that this is the same condition that appeared in
Lemma 6.2.) To say that the Ahlfors radius of the original disks is at most s is to say
that the images of four disks under η are contained in D(0, |α|s), D(α, |α|s), D(1, s),
and P1(K) \D(0, 1/s).
We are now prepared to state our main result.

Theorem 7.2. (Non-archimedean Meromorphic Four Islands Theorem)
Let K be a complete, algebraically closed non-archimedean field with residue field k, and
let p = char k ≥ 0. If p ≥ 3, define the real number

Ep =
∞
∑

i=1

1

pi − 1
.

Let U1, U2, U3, U4 ⊆ P1(K) be four pairwise disjoint open disks. Let ν1 ∈ P1(K) such

that no residue class of ν1 intersects more than two of U1, U2, U3, U4.

Let s be the Ahlfors radius of {U1, U2, U3, U4}. Set

µ =



















1 if char k = 0,

s1/2 if char k = 2,

s(
1

2
−

1

2p
)

if char k = p ≥ 3,

|p|−Eps1/2 if char k = p ≥ 3 and charK = 0.

Let f be a meromorphic function on D(0, 1) such that

(a). f#(0) > 1/r(ν1), and
(b). for any point ν ∈ D(0, 1) such that f∗(ν) = ν1, we have δ(f, ν) ≥ µ.

Then there is an open disk U ⊆ D(0, 1) such that f is one-to-one on U and f(U) = Ui

for some i = 1, 2, 3, 4.

Remarks.

1. Because the Ahlfors radius satisfies 0 < s ≤ 1, it follows that 0 < µ ≤ 1.
2. In the char k = 0 case, condition (b) becomes vacuous. Indeed, by the com-
ments following equation (6.2), δ(ν) = 1 for all ν. In other words, only the
condition on f# is relevant in residue characteristic zero, and that condition
depends only on the centers, but not the radii, of the four disks.
3. Outside the case char k = 0, the statement of the theorem becomes stronger if
µ is smaller, because more functions f will satisfy condition (b).
4. If char k = p ≥ 3 and charK = 0, then two different values of µ are given
above. Both are valid; but in practice, one should choose whichever is smaller,
in light of Remark 3 above. The s(1/2−1/(2p)) value is better for s close to 1, while
the other value is better for s closer to 0.
5. The lower bound of 1/r(ν1) for f#(0) in condition (a) is sharp, as we now
observe. Choose λ ∈ K with |λ| ≥ 1. Let f(z) = λz, let ν1 = ν(0, |λ|), and
let each Ui be a disk of the form D(ai, ε), with |ai| = |λ| and ε > 0 as small as
one wishes. Note that f#(0) = C1 = |λ|, so that condition (a) just barely fails;
however, all the other hypotheses of Theorem 7.2 hold. Nonetheless, the image
f(D(0, 1)) fails to intersect any Ui, let alone map a subdomain onto one of them.
The sharpness of condition (b) is more subtle and will be considered in the

examples of Section 8.
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Theorem 7.2 will be a corollary of the following statement.

Theorem 7.3. Let 0 < s ≤ 1, and let K, k, p, Ep, and µ be as in Theorem 7.2. Let

α ∈ D(0, 1) \D(1, 1) with α 6= 0, and set

U1 = D(0, |α|s), U2 = D(α, |α|s), U3 = D(1, s), and U4 = P1(K) \D(0, 1/s).

Let ρ ∈ [|α|, 1], and set ν1 = ν(0, ρ).
Let f be a meromorphic function on D(0, 1) Suppose that

(a). f(0) ∈ D(0, ρ) \D(1, 1),
(b). |f ′(0)| > ρ, and
(c). G(ν) ≥ µ2 for every ν ∈ D(0, 1) such that f∗(ν) = ν1, where G is defined as

in equation (6.3).

Then there is an open disk U ⊆ D(0, 1) such that f is one-to-one on U and f(U) = Ui

for some i = 1, 2, 3, 4.

Proof. In our proof, we will proceed along the path in D(0, 1) shown in Figure 1: we
look at larger and larger disks about 0 until we come to a disk D(0, R) with certain nice
properties. We choose an appropriate point x ∈ D(0, R), and then we look at smaller
disks about x until we come to a disk D(x, r) that maps one-to-one and onto one of the
disks Ui. We break our proof into a number of steps.

(i). Using the equivalence of the two definitions of ‖f‖ν in (4.1), hypothesis (b) implies
that there is some x̃ ∈ D(0, 1) for which |f(x̃)| > ρ. By hypothesis (a) and Lemma 5.2,
there is some radius 0 < r̃ < 1 such that ν1 ∈ f∗(D(0, r̃)). By Lemma 5.1, we may
assume that r̃ is the minimum such radius; hence, by hypothesis (a) and Lemma 5.2
again, f(D(0, r̃)) ⊆ D(0, ρ) \D(1, 1).

(ii). Define the piecewise linear function γ : (−∞, 0) → R by

γ(log r) = − logG(ν(0, r)),

as in Lemma 6.1. By step (i),

‖f‖ν(0,r̃) ≤ ρ, ‖f − α‖ν(0,r̃) ≤ ρ, and ‖f − 1‖ν(0,r̃) = 1,

and in addition, f is holomorphic on D(0, r̃). Hence f ′ is also holomorphic on D(0, r̃),
and therefore ‖f ′‖ν(0,r̃) ≥ |f ′(0)|; see equation (4.1). Applying these various bounds to
equation (6.3), we obtain

(7.1) γ(log r̃) ≤ 2(log ρ− log |f ′(0)| − log r̃).

We claim that there is some R ∈ [r̃, 1) such that

N0(0, R) +Nα(0, R) +N1(0, R) +N∞(0, R) > 2Nram(0, R).

Indeed, if there were no such R, then by Lemma 6.1, γ would have slope at most −2 on
[log r̃, 0). By inequality (7.1), it would follow that

γ(log r) ≤ 2(log ρ− log |f ′(0)| − log r)

for all r ∈ [r̃, 1). Since |f ′(0)| > ρ, there would be some such r for which G(ν(0, r)) > 1,
contradicting Lemma 6.2. Thus, the desired radius R does exist, as claimed.
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(iii). Since R ≥ r̃, then by Step (i), ν1 ∈ f∗(D(0, R)). Moreover, by Lemma 6.3, we
may choose y ∈ D(0, R) such that for every r ∈ (0, R],

N0(y, r) +Nα(y, r) +N1(y, r) +N∞(y, r) > 2Nram(y, r).

We wish to find a (possibly different) point x ∈ D(0, R) and a (possibly smaller) radius
R′ so that the pair (x,R′) satisfies the following four properties:

(1). ν1 ∈ f∗(D(x,R′)),
(2). ν1 6∈ f∗(D(x,R′)),
(3). N0(x, r)+Nα(x, r)+N1(x, r)+N∞(x, r) > 2Nram(x, r) for all r ∈ (0, R′], and
(4). G(ν(x,R′)) ≥ µ2.

(iv). We will find x and R′ by an inductive process. We begin with the point y0 = y
and the radius R0 = R from step (iii). We have just observed that properties (1) and (3)
already apply to the pair (y0, R0).
At stage n ≥ 1 of the process, given a pair (yn−1, Rn−1) for which properties (1)

and (3) hold, define

R′

n−1 = {r ∈ (0, Rn−1] : ν1 ∈ f∗(D(yn−1, r))},

which is nonempty because Rn−1 ∈ R′

n−1. Let R′

n−1 = infR′

n−1. It follows easily
from the continuity of f∗ that R′

n−1 > 0. By definition of R′

n−1, the properties of
(yn−1, Rn−1), and Lemma 5.1, properties (1) and (3) apply to the pair (yn−1, R

′

n−1). In
addition, property (2) applies to the pair, by Lemma 5.3. If G(ν(yn−1, R

′

n−1)) ≥ µ2,
then property (4) holds, and our process finishes by setting (x,R′) = (yn−1, R

′

n−1). We
may therefore assume that G(ν(yn−1, R

′

n−1)) < µ2.

By property (1), there is a disk D(zn, R
′′

n) ⊆ D(yn−1, R
′

n−1) such that f∗(ν(zn, R
′′

n)) =

ν1; hence G(ν(zn, R
′′

n)) ≥ µ2, by hypothesis (c). Therefore, D(zn, R
′′

n) 6= D(yn−1, R
′

n−1).
In particular, R′′

n < R′

n−1.
Define γn(log r) = − logG(ν(zn, r)), so that γn is continuous on the interval [R′′

n, R
′

n−1],
with γn(R

′′

n) ≤ −2 log µ < γn(R
′

n−1). Therefore, γn has an absolute minimum at some
radius Rn ∈ [R′′

n, R
′

n−1). Without loss, we may assume Rn is the largest radius in
[R′′

n, R
′

n−1) for which γn attains its minimum. Thus, the piecewise linear function γn
must have strictly positive slope at Rn; hence, by Lemma 6.1,

N0(zn, Rn) +Nα(zn, Rn) +N1(zn, Rn) +N∞(zn, Rn) > 2Nram(zn, Rn).

By Lemma 6.3, there is a point yn ∈ D(zn, Rn) such that for every r ∈ (0, Rn],

N0(yn, r) +Nα(yn, r) +N1(yn, r) +N∞(yn, r) > 2Nram(yn, r).

In addition, ν1 ∈ f∗(D(yn, Rn)), since D(zn, R
′′

n) ⊆ D(yn, Rn). Thus, the pair (yn, Rn)
satisfies properties (1) and (3) above, so that our inductive process may repeat.
To show that the process must eventually stop, we claim, for every n ≥ 1, that yn−1 6∈

D(yn, R
′

n). Otherwise, because yn ∈ D(yn−1, R
′

n−1) and R′

n ≤ Rn < R′

n−1, we would

have D(yn−1, R
′

n−1) = D(yn, R
′

n−1). However, ν1 ∈ f∗(D(yn, R
′

n)) ⊆ f∗(D(yn, R
′

n−1)), by
condition (1) for (yn, R

′

n). At the same time, ν1 6∈ f∗(D(yn−1, R
′

n−1)), by condition (2)
for (yn−1, R

′

n−1). This contradiction proves the claim.
In particular, the points yn are all distinct. Meanwhile, f(yn) ∈ {0, α, 1,∞} for each

yn, by property (3) and the comments following Lemma 6.3. By Lemma 5.1, there are
only finitely many such points in D(0, R); hence, the process must eventually stop.
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(v). We now have a pair (x,R′) satisfying properties (1–4) from step (iii) above. For
the remainder of the proof, we proceed roughly as in Proposition 5.2 of [6].
As noted following Lemma 6.3, we have f(x) ∈ {0, α, 1,∞}. We may assume that

f(x) = 0. Indeed, if f(x) = α, then we can replace f by η◦f , where η(z) = (z−α)/(1−α),
which takes α to 0, fixes 1, ∞, and ν1, and takes 0 to α/(α−1). It also maps each of the
disks Ui into the disks of appropriate Ahlfors radius for these four centers, and it preserves
properties (1–4) above. Similar arguments hold for f(x) = ∞ (with η(z) = α/z) and
for f(x) = 1 (with η(z) = [α(z − 1)]/[(α− 1)z]).
Since ν1 6∈ f∗(D(x,R′)), and since f(x) = 0, f cannot have poles in D(x,R′), by

Lemma 5.2. Similarly, it cannot take on the value 1 in D(x,R′). Thus, f and f ′ are
holomorphic on D(x,R′), and N1(x, r) = N∞(x, r) = 0 for all 0 < r < R′.
Let R′′ = inf{0 < r ≤ R′ : α ∈ f(D(x, r))} if this set is nonempty, or R′′ = R′ if

it is empty. For R′′ < r < R′, we have N0(x, r) = Nα(x, r), since any two points in
the holomorphic image of a disk have the same number of preimages (see the comments
preceding Definition 3.2). For any such r, then, condition (3) becomes

(7.2) N0(x, r) +Nα(x, r) +N1(x, r) +N∞(x, r)− 2Nram(x, r)− 2 ≥ 0,

because N0 +Nα +N1 +N∞ = 2N0 is even.
Define the piecewise linear function γx by γx(log r) = − logG(ν(x, r)), so that the left

side of (7.2) is the slope of γx at log r. By (7.2) and property (4), then,

γx(logR
′′) ≤ γx(logR

′) ≤ −2 log µ.

Note that f(D(x,R′′)) ⊆ D(0, |α|), by the minimality of R′′. Hence, ‖f − α‖ν(x,R′′) =
|α| and ‖f − 1‖ν(x,R′′) = 1, and therefore

γx(logR
′′) = log |α|+ log ‖f‖ν(x,R′′) − 2(logR′′ + log ‖f ′‖ν(x,R′′)),

so that

(7.3) log |α|+ log ‖f‖ν(x,R′′) + 2 log µ ≤ 2(logR′′ + log ‖f ′‖ν(x,R′′)).

By the comments following equation (6.2), δ(f, ν(x, r)) = r‖f ′‖ν(x,r)/‖f‖ν(x,r) for all
0 < r ≤ R′′. In particular, inequality (7.3) may be rewritten as

(7.4) log |α|+ 2 log µ ≤ log ‖f‖ν(x,R′′) + 2 log δ(f, ν(x,R′′)).

Moreover, for all r < R′′, property (3) is

(7.5) N0(x, r) ≥ 1 + 2Nram(x, r).

(vi). Let R̃ be the largest radius in (0, R′′] such that f is one-to-one on D(x, R̃).
(Note that R̃ > 0, by the comments following Lemma 6.3.) By inequality (7.5) and the
fact that f is holomorphic on D(x,R′′) with f(x) = 0, it is easy to verify that

(7.6) N0(x, r) is divisible by p = char k for all r ∈ (R̃, R′′)

and that

(7.7) R̃‖f ′‖ν(x,R̃) = ‖f‖ν(x,R̃), or equivalently, δ(f, ν(x, R̃)) = 1;

see, for example, Lemma 5.5 of [6].
We will now complete the proof by showing that f maps U = D(x, R̃) one-to-one and

onto a disk containing D(0, |α|s). Since f(x) = 0 and f is holomorphic on U , we only
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need to show that ‖f‖ν(x,R̃) ≥ |α|s. We consider four separate cases, corresponding to
the definition of µ in the statement of Theorem 7.2.
Case 1: p = 0. Since f(x) = 0, we know that N0(x, r) ≥ 1 for any r > 0; hence

R̃ = R′′, lest (7.6) be violated. Inequality (7.4) with s = µ = 1 and equation (7.7) then
imply that ‖f‖ν(x,R̃) ≥ |α|s, and we are done.

Case 2: p = 2. Inequality (7.2) holds not just for R′′ < r < R′ but also for
R̃ < r < R′′, because N0(x, r) is divisible by 2 for all such r, by (7.6). Thus, γx does not
decrease on [log R̃, logR′′], so that

log |α|+ log ‖f‖ν(x,R̃) + 2 log µ ≤ 2(log R̃ + log ‖f ′‖ν(x,R̃)),

by inequality (7.3). By equation (7.7), then, ‖f‖ν(x,R̃) ≥ |α|µ2 = |α|s, as desired.

Case 3: p ≥ 3. For every integer i ≥ 0, set ri = sup{r ∈ (0, R′′] : N0(x, r) < pi+1},
and for every i ≥ 1, define the piecewise linear function ψi by

ψi(log r) = (pi + 1) log ‖f‖ν(x,r) − 2pi(log r + log ‖f ′‖ν(x,r))

= (1− pi) log ‖f‖ν(x,r) − 2pi log δ(f, ν(x, r)).

Note that the slope of ψi at log r is (pi + 1)N0(x, r)− 2pi(Nram(x, r) + 1), and that

R̃ = r0 ≤ r1 ≤ · · · ≤ rn = R′′

where n is the smallest integer such that N0(x,R
′′) < pn+1.

For r ∈ (ri−1, R
′′), we have N0(x, r) ≥ pi. Inequality (7.5) therefore gives us

2piNram(x, r) + 2pi ≤ piN0(x, r) + pi ≤ (pi + 1)N0(x, r),

which implies that ψi has nonnegative slope everywhere on (log ri−1, logR
′′) and hence

does not decrease on [log ri−1, logR
′′]. Thus,

(7.8) log ‖f‖ν(x,ri−1) − log ‖f‖ν(x,r) ≥
2pi

pi − 1
[log δ(f, ν(x, r))− log δ(f, ν(x, ri−1))]

for any r ∈ [ri−1, R
′′].

Using i = 1 and r = R′′ in inequality (7.8), we obtain our desired result that

log ‖f‖ν(x,R̃) ≥ log ‖f‖ν(x,R′′) +
2p

p− 1
[δ(r, ν(x,R′′))− δ(r, ν(x, R̃))]

≥
1

p− 1

[

p log |α|+ 2p log µ− log ‖f‖ν(x,R′′)

]

≥ log |α|+ log s,

where the second inequality is by (7.4) and (7.7), and the third is because µ = s(p−1)/(2p)

in this case and because f(D(x,R′′)) ⊆ D(0, |α|).
Case 4: p ≥ 3 and charK = 0. In this final case, preserving all the notation from

Case 3, we use the functions ψi defined above for general i, rather than simply for i = 1.
For fixed i ≥ 0 and for r ∈ (0, ri], is it easy to verify that δ(f, ν(x, r)) ≥ |p|i, since
f is holomorphic on D(x, ri) and 1 ≤ N0(x, r) < pi+1 for all r < ri; see, for example,
Lemma 4.2 of [6].
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Substituting r = ri in inequality (7.8) and taking the sum over all 1 ≤ i ≤ n,

log
‖f‖ν(x,R̃)

‖f‖ν(x,R′′)

≥
n

∑

i=1

(2 + ei) [log δ(f, ν(x, ri))− log δ(f, ν(x, ri−1))]

= (2 + en) log δ(f, ν(x, rn)) +
n−1
∑

i=1

(ei − ei+1) log δ(f, ν(x, ri))

≥ 2 log δ(f, ν(x,R′′)) +

[

nen +
n−1
∑

i=1

(iei − iei+1)

]

log |p|

≥ 2 log µ+ (e1 + e2 + · · ·+ en) log |p|+ log |α| − log ‖f‖ν(x,R′′)

where ei = 2/(pi − 1). Here, the equality is by equation (7.7) and because r0 = R̃;
the second inequality is because ei > ei+1 and δ(f, ν(x, ri)) ≥ |p|i; and the third is by
inequality (7.4). Since |p| < 1 and e1 + · · ·+ en < 2Ep, we get the desired inequality

‖f‖ν(x,R̃) > |α||p|2Epµ2 = |α|s. �

Proof of Theorem 7.2. For each i = 1, 2, 3, 4, choose a point ai ∈ Ui. Re-indexing if
necessary, we may assume by hypothesis that neither a1 nor a2 lies in the same residue
class of ν1 as either a3 or a4. Similarly, we may assume that f(0) does not lie in the
same residue class as either a3 or a4.
There is a (unique) map η ∈ PGL(2, K) taking a1 to 0, a3 to 1, and a4 to ∞.

Let α = η(a2). Each disk η(Ui) is contained in one of the disks D(0, |α|s), . . . ,P1(K) \
D(0, 1/s) listed in the statement of Theorem 7.3. It is straightforward to check that that
η∗(ν1) = ν(0, ρ) for some ρ ∈ [|α|, 1], and that the rest of the hypotheses of Theorem 7.3
are satisfied by η ◦ f . (For example, hypothesis (c) follows from Lemma 6.2; and the
lower bound on |(η ◦ f)′(0)| falls out of a brief computation using the given lower bound
on f#(0).) Hence, η ◦ f maps some disk one-to-one and onto one of the four disks
D(0, |α|s), etc. Taking subdisks, one of the disks η(Ui) is also a one-to-one image under
η ◦ f (necessarily of a disk); Theorem 7.2 now follows by applying η−1. �

Corollary 7.4. Let K, k, p, and Ep be as in Theorem 7.2. Let U1, U2, U3, U4 ⊆ P1(K)
be four pairwise disjoint open disks. Let ν1 ∈ P1(K) such that no residue class of ν1
intersects more than two of U1, U2, U3, U4. Define µ as in Theorem 7.2.

Let f be a nonconstant meromorphic function on K such that for any point ν ∈
P1(K) \ {∞} for which f∗(ν) = ν1, we have δ(f, ν) ≥ µ. Then there is an open disk

U ⊆ K such that f is one-to-one on U and f(U) = Ui for some i = 1, 2, 3, 4.

Proof. Since f is nonconstant and meromorphic on K, f(K) omits at most one point
of P1(K); by Lemma 5.2, all type II and III points of P1(K) are in the image of the
Berkovich affine line P1(K) \ {∞}. The hypotheses therefore imply that δ(f, ν) is not
identically zero (as would otherwise be possible for a function of the form f(z) = h(zp)
in characteristic p, for example). Thus, f#(x) > 0 for some x ∈ K.
For c ∈ K with |c| sufficiently large, the map g(z) = f(c(z−x)) satisfies the hypotheses

of Theorem 7.2 on D(0, 1), and the Corollary follows. �
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8. Examples

Theorem 7.2 differs from its complex counterpart in several noticeable ways. First and
foremost, only four islands are required, as opposed to the five in the complex case. As
observed in [6], Example 6, it would be impossible to reduce the number to three islands.
On the other hand, in the case of positive residue characteristic, the non-archimedean
theorem requires the extra condition that δ(f, ν) ≥ µ for any ν mapping to ν1. A
weaker condition, that δ(f, ν(0, r)) ≥ µ for some (large enough) r, is required for the
holomorphic version [6]. In this section, we present examples to illustrate both that the
lower bound of µ is essentially sharp, and that it is not enough to assume only one ν
mapping to ν1 satisfies the inequality, even if the number of islands is increased.
We address the sharpness µ in Example 8.1, but only in the case that char k = p > 0 =

charK. As in [6], we will show that the bound µ in Theorem 7.2 (really, Corollary 7.4,
since we will consider meromorphic functions on K) is sharp if p = 2 and is almost sharp
(except possibly for the coefficient |p|−Ep) if p ≥ 3. (If char k = 0, then condition (b)
is vacuous and hence trivially sharp.) We conjecture that examples analogous to [6],
Examples 3 and 4, would prove the sharpness of µ in the cases that charK = p > 0.

Example 8.1. Suppose charK = 0 and char k = p ≥ 2. (For example, let K = Cp.)
Let E be an elliptic curve defined over K with identity point O, and let n ≥ 1 be an
integer. Assume that E has good ordinary reduction. (The conclusions we will reach
also hold for multiplicative reduction, but that case is slightly more complicated because
there are a number of different points ν which will map to the point ν1 we will choose
shortly.) Let E1 be the set of points which map to O under reduction.
If we identify E1 with the open unit disk, then by the characteristics of K and k,

and because the corresponding formal group has height 1, there are p-torsion points
{P1, . . . , Pp−1} at distance |p|1/(p−1) from O in E1. Moreover, there are no nontrivial
torsion points closer than |p|1/(p−1) to O.
The multiplication-by-n map [n] : E → E has the property that [n](−P ) = −[n](P )

for any point P on E. Meanwhile, the group {±1} acts on the curve E (with −1 taking
P to −P ) with quotient P1. It follows that there is a map fn : P1 → P1 for which

E
[n]

−−−→ E

h





y
h





y

P1 fn
−−−→ P1

commutes, where h is the quotient map. (If E is written in the form y2 = (cubic in x),
then h is just the x-coordinate map.) The function fn is known as a Lattès map to
dynamicists. It is a rational function of (geometric) degree n2.
Let a1, a2, a3, a4 be the images under h of the 2-torsion points E[2] of E. Note that

E[2] is the set of ramification points of h. For convenience, choose coordinates on P1

so that h(O) = a1 = 0 and so that h(E1) = D(0, 1). Let ν1 = ν(0, 1); then because
E has good reduction, we have (fn)∗(ν) = ν1 if and only if ν = ν1. Furthermore, an
examination of the map [n] restricted to E1 shows that δ(fn, ν1) = |n|. Let µ = |n|.
Let Cn = E[2n] \E[2] be the set of 2n-torsion points which are not 2-torsion, and let

Bn ⊆ P1(K) be the image of Cn under h. By considering the ramification of the map
h, and knowing that fn must have exactly 2 deg fn − 2 = 2n2 − 2 critical points, it is



22 ROBERT L. BENEDETTO

easy to check that Bn is the set of critical points of fn, and that each point of Bn maps
2-to-1 to its image. One can also check that f ′

n(0) = n2.
Because h maps E1 two-to-one onto D(0, 1), it is not difficult to show that |h(Pi)| =

|p|2/(p−1) for all i = 1, . . . , p− 1. Similarly, the lack of nontrivial torsion points in E1 at
distance less than |p|1/(p−1) from O implies that

(8.1) ({a2, a3, a4} ∪ Bn) ∩D(0, |p|2/(p−1)) = ∅.

In fact, if p ∤ n and p ≥ 3, then ({a2, a3, a4} ∪ Bn) ∩D(0, 1) = ∅.
Meanwhile, Bn ∪ {a1, a2, a3, a4} is precisely the preimage of {a1, a2, a3, a4} under fn.

Thus, if we choose U1, U2, U3, U4 to be disjoint disks containing a1, a2, a3, a4, then the
only disks U that could map one-to-one onto any Ui would have to contain exactly one
of a1, a2, a3, a4 and cannot intersect Bn. By translating on E by 2-torsion points, it
suffices to consider only one-to-one mappings of fn from a disk U containing a1 = 0 to
U1 ⊆ D(0, 1). In fact, the preimage disk U we should consider is the largest disk about
0 which contains no points in Bn ∪ {a2, a3, a4}. If p|n or p = 2, then by equation (8.1),
this disk is U = D(0, |p|2/(p−1)). Since |f ′

n(0)| = |n|2, the largest possible one-to-one
image disk therefore has radius s = |n|2 · |p|2/(p−1). (See, for example, [6], Lemma 2.2.)
On the other hand, if p ∤ n and p ≥ 3, the domain disk is U = D(0, 1), and the image
also has radius s = 1.
If p = 2, then there is one nontrivial 2-torsion point P1 in E1. Its image h(P1) = a2 is

the point α of Section 7, with |α| = |p|2/(p−1). Since no residue class of ν1 contains more
than two of a1, a2, a3, a4, the conditions of Corollary 7.4 hold for fn. The image disk U1

of the previous paragraph therefore has radius |p|2/(p−1)|n|2 = |α| · µ2; thus, the Ahlfors
radius s = µ2 attains the bound µ = s1/2 in Theorem 7.2.
If p ≥ 3, we have |α| = 1, since none of {a2, a3, a4} lie in D(0, 1). If p ∤ n, then

µ = s = 1, attaining the better (i.e., smaller) of the two values given for µ in this
case in Theorem 7.2. Finally, if p|n, then the image disk has radius s = µ2|p|2/(p−1),
which is the same order of magnitude (and only slightly worse in the coefficient) than
the Theorem 7.2 bound of s > µ2|p|2Ep .

Our final example will illustrate that having only one ν for which f∗(ν) = ν1 with
δ(f, ν) bounded below by some fixed amount is not enough to guarantee an islands
theorem, regardless of how many islands there are, how small they are, or how large
the lower bound on δ(f, ν) is. Like the previous example, Example 8.2 is only for the
case that char k > charK = 0. Of course, if char k = 0, then condition (b) is already
vacuous, so there will be no counterexamples. On the other hand, if charK = p > 0,
then we imagine that examples similar to the following one may be constructed.

Example 8.2. Assume that char k = p > 0 = charK. For any integer N ≥ 0 and
any radius 0 < s ≤ 1, we select N + 2 islands as follows. Set a0 = 0 ∈ K. For each
i = 1, . . . , N , choose ai ∈ K such that |ai| = 1 and, for each j 6= i, |ai − aj| = 1. The
first N + 1 islands will be the open disks D(ai, s), with i = 0, . . . , N . The final island
will be P1(K) \ D(0, 1/s), which is the open disk of spherical radius s centered at ∞.
Let ν1 = ν(0, 1), which separates each island from every other.
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Pick n ≥ 1 large enough so that |pn| < s, and choose b ∈ K so that 0 < |b| < s. Let
c = −b1+pn . For each i = 1, . . . , N , define

fi(z) =
(z − ai)

pn + c

(z − ai)p
n = 1 +

c

(z − ai)p
n .

Then, define

f0(z) =
z1+pn + c

zpn
= z +

c

zpn
, and f(z) =

N
∏

i=0

fi(z).

We consider f as a meromorphic function on K. The reader may check that f∗(ν1) = ν1
and δ(f, ν(0, 1)) = 1, which by Lemma 6.2 is the maximum value δ can attain.
The only preimages of ∞ are a0, . . . , aN , all of which are critical points. Thus, the

island at∞ has no one-to-one preimages. (If we were to use P1(K) as our domain instead
of K, then simply remove the final island (at ∞) from consideration.) In addition, if
|z − ai| ≥ 1 for all i = 0, . . . , N , then it is easy to see that |f(z) − ai| ≥ 1 also. In
particular, any preimages of the islands D(ai, s) must lie in the disks D(aj, 1).
There are 1 + pn preimages of 0 in D(0, 1), namely the roots of f0(z) = 0, which are

all of the form ζjb, where ζ is a primitive (1+pn)-root of unity. In particular, the largest
open disk containing exactly one such root has radius |b|. It is easy to compute that
|f ′(ζjb)| = 1, and therefore the image of that largest open disk is a disk of radius |b| < s.
Thus, the island at 0 is not a one-to-one image of a disk inside D(0, 1).
Similarly, for any fixed i = 1, . . . , N , there are pn preimages of 0 in D(ai, 1), namely

the roots of (z − ai)
pn = −c. Those roots are of the form x = ai + ωjd, where ω is a

pn-root of unity, and d is a pn-root of −c. Any ωj is distance |p|1/(p−1) from the nearest
other ωℓ, so that the largest disk containing exactly one root of (z − ai)

pn = −c has
radius |p|1/(p−1)|c|1/p

n

. We can compute that |f ′(x)| = |p|n · |c|−1/pn , so that the largest
possible one-to-one image disk has radius |p|n+(1/(p−1)) < |p|n < s. Thus, there are no
one-to-one preimages of the island at 0 anywhere in K.
For 1 ≤ i ≤ N , the preimages of ai in D(0, 1) must be points x ∈ D(0, 1) satisfying

|f0(x)| = 1. Since |x| < 1, this must mean |x| = |c|1/p
n

. Because of the pole at 0,
the largest open disk about x that could conceivably map onto the island D(ai, s) must
have radius at most |c|1/p

n

. (In fact, it will have slightly smaller radius than that, but
the bound of |c|1/p

n

will suffice for our purposes.) Some computation using the above
value for |x| shows that |f ′(x)| ≤ max{1, |p|n|c|−1/pn}, and therefore the largest possible
one-to-one image disk has radius

max
{

|c|1/p
n

, |p|n
}

≤ max {|b|, |p|n} < s,

which fails to cover the island.
Before considering the final case, observe that

f(z)− z = z ·

[

−1 +
(

1 +
c

z1+pn

)

N
∏

j=1

(

1 +
c

(z − aj)p
n

)

]

,

so that

|f(z)− z| ≤ |z| ·max

{

∣

∣

∣

c

z1+pn

∣

∣

∣
,

∣

∣

∣

∣

c

(z − a1)p
n

∣

∣

∣

∣

, . . .

∣

∣

∣

∣

c

(z − aN)p
n

∣

∣

∣

∣

}

.
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Thus, if |c|1/(1+pn) < |x − aj| < 1 for some j = 1, . . . , N and some x ∈ K, then
|f(x)− x| < |x− aj|. In particular, no such x can have image f(x) in any of the N + 2
islands.
We are now ready to consider the final possibility, that there is a preimage of an

island D(ai, s) in the disk D(aj, 1) for some i, j ∈ {1, . . . , N}, where i and j may or
may not be equal. In such a case, we have a point x in D(x, aj) with f(x) = ai. This
means that |fj(x)| = 1, so that |x − aj| ≥ |c|1/p

n

. From this bound, it follows that
|f ′(x)| ≤ max{1, |pn|/|x − aj|}. Meanwhile, the largest possible disk mapping onto
D(ai, s) cannot contain the pole at aj, so that its radius must be at most |x − aj|.
Therefore, the largest possible one-to-one image disk about ai has radius at most

|f ′(x)| · |x− aj| ≤ max{|x− aj|, |p
n|} ≤ max{|c|1/(1+pn), |pn|} = max{|b|, |pn|} < s,

where the second inequality is by the previous paragraph. Thus, none of the islands has
a one-to-one preimage anywhere in K, even though f∗(ν1) = ν1 with δ(f, ν1) = 1.

We close by noting that an examination of the proof of Theorem 7.3 applied to Ex-
ample 8.2 reveals why the hypothesis that every (or at least many) ν mapping to ν1
must have δ(f, ν) ≥ µ. For that choice of f , we start from R = 1 and move inward,
searching for a disk satisfying properties (1–4) of Step (iii) of the proof of Theorem 7.3.
Properties (1), (3), and (4) already apply to D(0, R), but property (2) does not. The
inductive process of Step (iv) would begin with R0 = 1 and y0 being one of the roots of
f = ai in D(ai, 1) for some i = 0, . . . , N . The minimal radius R′

0 would be the small-
est radius about y0 for which f(D(y0, R

′

0)) contained points outside D(ai, 1). That is,
R′

0 = |y0−ai|, which we saw to be at most |b|. Even though the inequality of property (3)
holds, the exponent of G is positive (in fact, equal to 1) for r ∈ [R′

0, R0], so that as r
shrinks from R0 down to R′

0, G also shrinks from 1 down to R′

0 ≤ |b|. Thus, although
f is at last one-to-one on D(y0, R

′

0), the image is too small because there are poles too
close to y0, and the value of G (as well as δ, along with it) has shrunk too much. Then,
without hypothesis (b) of the Theorem, if we try to shrink to a disk D(z1, R

′′

1) according
to the algorithm, we have no guarantee that G will increase, and therefore we have no
guarantee that property (3) holds.
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[10] J.-P. Bézivin, Dynamique des fractions rationannelles p-adiques, monograph, 2005. Available online

at http://www.math.unicaen.fr/~bezivin/dealatex.pdf
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