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Abstract. Given a global field K and a polynomial φ defined over K of degree at least
two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic
points of φ is bounded in terms of only the degree of K and the degree of φ. In 1997,
for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was
exponential in s, the number of primes of bad reduction of φ. By careful analysis of the
filled Julia sets at each prime, we present an improved bound on the order of s log s. Our
bound applies to polynomials of any degree (at least two) over any global field K.

Let K be a field, and let φ ∈ K(z) be a rational function. Let φn denote the nth iterate
of φ under composition; that is, φ0 is the identity function, and for n ≥ 1, φn = φ ◦ φn−1.
We will study the dynamics φ on the projective line P1(K). In particular, we say a point x
is preperiodic under φ if there are integers n > m ≥ 0 such that φm(x) = φn(x). The point
y = φm(x) satisfies φn−m(y) = y and is said to be periodic (of period n −m). Note that
x ∈ P1(K) is preperiodic if and only if its orbit {φn(x) : n ≥ 0} is finite.

For example, let K = Q and φ(z) = z2−29/16. Then {5/4,−1/4,−7/4} forms a periodic
cycle (of period 3), and −5/4, 1/4, 7/4, and ±3/4 each land on this cycle after one or two
iterations. In addition, the point ∞ is of course fixed. These nine Q-rational points are
all preperiodic under φ. Meanwhile, it is not difficult to see that no other point in P1(Q)
is preperiodic by showing that the denominator of a rational preperiodic point must be 4,
and that the absolute value must be less than 2.

In general, for any global field K, any dimension N ≥ 1, and any morphism φ : PN → PN

over K of degree at least two, Northcott proved in 1950 that the number of K-rational
preperiodic points of φ is finite [25]. More precisely, he showed that the preperiodic points
form a set of bounded arithmetic height. Years later, by analogy with the Theorems of
Mazur [19] and Merel [20] on K-rational torsion of elliptic curves, Morton and Silverman
proposed the following Conjecture [23].

Uniform Boundedness Conjecture. (Morton and Silverman, 1994)
Given integers D,N ≥ 1 and d ≥ 2, there is a constant κ = κ(D,N, d) with the following
property. Let K be a number field with [K :Q] = D, and let φ : PN → PN be a morphism
of degree d defined over K. Then φ has at most κ preperiodic points in PN(K).

The analogy between preperiodic points and torsion comes from the fact that the torsion
points of an elliptic curve E are precisely the preperiodic points of the multiplication-by-
two map [2] : E → E. In fact, taking x-coordinates, the map [2] induces a rational function
(known to dynamicists as a Lattès map) φ : P1 → P1 of degree 4 whose preperiodic points
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are precisely the x-coordinates of the torsion points of E. Thus, Merel’s Theorem would
follow as a simple corollary of the Morton and Silverman Conjecture for N = 1 and d = 4.
More generally, Fakhruddin has shown [12] that the full Morton and Silverman Conjecture
for D = 1 would imply uniform boundedness of torsion for abelian varieties.

The Conjecture seems to be very far from a proof. However, there is growing evidence
that it is valid, at least in the simplest case, that K = Q, N = 1, and φ is a polynomial
of degree 2. (The problem then reduces to considering φc(z) = z2 + c, with c ∈ Q.) In
particular, the computations in [22] and [13] show that φc never has a rational point of
period 4 or 5, respectively. Moreover, Poonen showed in 1998 that if φc never has rational
periodic points of period greater than 5, then it never has more than 9 rational preperiodic
points [28]. (That bound, if true, would be sharp, in light of the c = −29/16 example
above.) Those results all considered moduli spaces, for fixed n > m ≥ 0, of pairs (c, x)
such that φn

c (x) = φm
c (x), giving curves analogous to modular curves, but with no known

structure to take the place of a Hecke ring. Instead, the theorems were proven by delicate
ad hoc computations on the particular curves that arose.

Other researchers have found bounds for the longest possible period of a K-rational
periodic point by analyzing at a prime of “good reduction” (see Definition 2.1 below); see,
for example, [11, 23, 24, 26, 27, 35]. If s is the total number of primes of “bad reduction,”

then these results lead to bounds on the order of at least ds
4D

for the number of K-rational
periodic points (cf. Corollary B of [23], for example).

A different strategy (for the family φc(z) = z2+c for c ∈ Q) appeared in a 1997 theorem of
Call and Goldstine [9], who showed that φc has at most 1+2s+2 rational preperiodic points,
where s is the number of primes of bad reduction. They analyzed the dynamics at the
primes v of bad, not good, reduction, by studying the filled Julia set Kv (see Definition 2.2
below). All preperiodic points in Q sit inside Kv, which in turn lies in a union of two v-adic
disks, each of volume 1. (A slightly different condition holds at v = 2,∞.) For good v, a
single such disk suffices. The bound of O(2s) then follows naturally.

In this paper, we will still work only with polynomials and only in dimension 1, but the
degree d ≥ 2 and global field K of definition will be arbitrary. Like Call and Goldstine, we
will study dynamics over the associated complete valued fields Cv. We refer the reader to
[4, 10, 21] for expositions on complex dynamics (where v is archimedean and Cv

∼= C), and
to [5, 6, 8, 17, 30, 31, 33] for papers exploring various aspects of the newer realm of p-adic
and non-archimedean dynamics. By a detailed analysis of the filled Julia sets Kv ⊆ Cv, we
will obtain the following substantial improvement over the results of [9].

Main Theorem. Let K be a global field, let φ ∈ K[z] be a polynomial of degree d ≥ 2,
and let s be the number of bad primes of φ in K. Then the number of preperiodic points of
φ in P1(K) is at most O(s log s).

A more precise statement appears in Theorem 7.1; the big-O constant is essentially
(d2 − 2d + 2)/ log d. The idea of the proof is to consider, for each v ∈ MK , the product
Pv =

∏
i 6=j |xi−xj|v, where {x1, . . . , xN} are finite K-rational preperiodic points of φ. (The

product Pv is related to transfinite diameters and capacities, as discussed in Section 4.) If

rv is the diameter of the filled Julia set Kv, then Pv ≤ r
N(N−1)
v naively; but in Lemmas 3.4.a

and 4.1, we obtain Pv ≤ r
(d−1)N logd N
v , with some correction factors for v archimedean.

The key, however, is our treatment of the prime w with filled Julia set Kw of the largest
diameter. We partition Kw into two pieces, and we show in Lemmas 3.4.b, 5.1, and 6.3 that
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the corresponding product Pw on each piece satisfies Pw ≤ r
(d−1)N(logd N−AN+B)
w for certain

simple constants A and B. The product P of all the Pv’s, restricted to preperiodic points

in the given piece of Kw, is then bounded by r
(d−1)NE
w , where E = s logdN −AN +B. For

N slightly larger than (1/A)s logd s (see Lemma 3.5), we get E < 0, so that P < 1, which
contradicts the product formula for the global field K. Thus, we get a bound of about
(1/A)s logd s on each piece; summing the two bounds gives the Theorem.

Of course, the details are complicated. In Sections 1 and 2, we will set terminology and
recall fundamental facts concerning local and global fields, bad primes, and filled Julia sets.
In Section 3, we will introduce notation for certain expressions that will arise later, and we
will bound these expressions in a series of technical but completely elementary Lemmas.
In Section 4, we will discuss transfinite diameters and prove our first nontrivial bound for
Pv, for general bad primes. In Sections 5 and 6, we will describe the partition of the filled
Julia set at a bad prime. Finally, in Section 7, we will state Theorem 7.1 and combine all
the results from the preceding sections to prove it.

The author would like to thank Laura DeMarco, Andrew Granville, Jonathan Lubin,
Bjorn Poonen, Joseph Silverman, and Daniel Velleman for a number of helpful conversa-
tions. Many thanks also to Matthew Baker for suggesting an improvement to the archi-
medean case of Lemma 4.1, and for other comments and stimulating discussions.

1. Global Fields and Local Fields

In this section we present the necessary fundamentals from the theory of local and global
fields. We also set some notational conventions for this paper. Although this material
is well known to number theorists, we present it for the convenience of dynamicists. See
Section B.1 of [16] or Section 4.4 of [29] for more details on global fields and sets of absolute
values; see [14, 18] for expositions concerning the local fields Cv.

1.1. Global fields and absolute values. Throughout this paper, K will denote a global
field. That is, K is either a number field (i.e., a finite extension of Q) or a function field over
a finite field (i.e., a finite extension of Fp(T ) for some prime p). We will write MK for the set
of standard absolute values on K. That is, MK consists of functions | · |v : K → R satisfying
|x|v ≥ 0 (with equality if and only if x = 0), |xy|v = |x|v|y|v, and |x+ y|v ≤ |x|v + |y|v, for
all x, y ∈ K. (We will frequently abuse notation and write v ∈ MK when our meaning is
clear.) Moreover, the absolute values in MK are chosen to satisfy a product formula, which
is to say that for each v ∈MK , there is an integer nv ≥ 1 such that for all x ∈ K×,

(1)
∏

v∈MK

|x|nv
v = 1.

Implicit in the product formula is the fact that for any x ∈ K×, we have |x|v = 1 for all
but finitely many v ∈MK .

All but finitely many v ∈MK satisfy the ultrametric triangle inequality

|x+ y|v ≤ max{|x|v, |y|v}.
(Note that |n|v ≤ 1 for all n ∈ Z.) Such v are called non-archimedean absolute values;
the finitely many exceptions are called archimedean absolute values. The non-archimedean
absolute values in MK correspond to prime ideals of the ring of integers of K. Hence, we
often refer to the absolute values v ∈MK as primes of K, even when v is archimedean.
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If K is a function field, then all absolute values are non-archimedean. If K is a number
field, then there are archimedean absolute values, each of which, when restricted to Q, is
the familiar absolute value | · |, commonly denoted | · |∞; we write v|∞, and we have

(2)
∑

v∈MK , v|∞

nv = [K :Q].

If v is non-archimedean, then |K×|v is a discrete subset of R, and we say that v is a
discrete valuation on K. In that case, choose πv ∈ K such that |πv|v ∈ (0, 1) is the largest
absolute value less than 1 attained in |K×|v. Then πv is called a uniformizer of K at v,
and we have |K×|v = {|πv|mv : m ∈ Z}. Moreover, if K is a number field, then |πv|−nv

v = pf

for some prime number p ∈ Z and some positive integer f , and | · |v restricted to Q is the
usual p-adic absolute value on Q. In this case, we say that v lies above p.

1.2. Local fields. For each v ∈ MK , we can form the completion Kv (often called the
local field at v) of K with respect to | · |v. We write Cv for the completion of an algebraic
closure Kv of Kv. (The absolute value v extends in a unique way to Kv and hence to Cv.)
The field Cv is then a complete and algebraically closed field. If v is archimedean, then Kv

is isomorphic either to R (in which case we call v a real prime) or to C (in which case we
call v a complex prime), and Cv

∼= C. We will henceforth avoid the notation Kv, as we will
soon introduce the notation Kv to denote a completely different object in Section 2.

If v is non-archimedean, then Cv is not locally compact, but it has other convenient
properties not shared by C. In particular, the disk Ov = {c ∈ Cv : |c|v ≤ 1} forms a ring,
called the ring of integers, which has a unique maximal ideal Mv = {c ∈ Cv : |c|v < 1}.
The quotient kv = Ov/Mv is called the residue field of Cv. The natural reduction map
from Ov to kv, sending a ∈ O to a = a +Mv ∈ kv, will be used to define good and bad
reduction of a polynomial in Definition 2.1 below; but after proving a few simple Lemmas
about good and bad reduction, we will not need to refer to Ov, Mv, or kv again.

1.3. Disks. Let Cv be a complete and algebraically closed field with absolute value v.
Given a ∈ Cv and r > 0, we write

D(a, r) = {x ∈ Cv : |x− a|v ≤ r} and D(a, r) = {x ∈ Cv : |x− a|v < r}

for the closed and open disks, respectively, of radius r centered at a. Note our convention
that all disks have positive radius.

If v is non-archimedean and U ⊆ Cv is a disk, then the radius of U is unique; it is the
same as the diameter of the set U viewed as a metric space. However, any point b ∈ U is
a center. That is, if |b − a|v ≤ r, then D(a, r) = D(b, r), and similarly for open disks. It
follows that two disks intersect if and only if one contains the other.

Still assuming that v is non-archimedean, the set |C×v |v of absolute values actually at-
tained by elements of C×v is usually not all of (0,∞). As a result, if r ∈ (0,∞)\ |C×v |v, then
D(a, r) = D(a, r) for any a ∈ Cv. However, if r ∈ |C×v |v, then D(a, r) ( D(a, r).

2. Bad Reduction and Filled Julia Sets

The following definition originally appeared in [23]. We have modified it slightly so that
“bad reduction” now means not potentially good, as opposed to not good.
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Definition 2.1. Let Cv be a complete, algebraically closed non-archimedean field with ab-
solute value | · |v, ring of integers Ov = {c ∈ Cv : |c|v ≤ 1}, and residue field kv. Let
φ(z) ∈ Cv(z) be a rational function with homogenous presentation

φ ([x, y]) = [f(x, y), g(x, y)],

where f, g ∈ Ov[x, y] are relatively prime homogeneous polynomials of degree d = deg φ, and
at least one coefficient of f or g has absolute value 1. We say that φ has good reduction
at v if f and g have no common zeros in kv × kv besides (x, y) = (0, 0). We say that
φ has potentially good reduction at v if there is some linear fractional transformation
h ∈ PGL(2,Cv) such that h−1 ◦φ◦h has good reduction. If φ does not have potentially good
reduction, we say it has bad reduction at v.

Naturally, for f(x, y) =
∑d

i=0 aix
iyd−i, the reduction f(x, y) in Definition 2.1 means∑d

i=0 aix
iyd−i. By convention, if Cv

∼= C is archimedean, we declare all rational functions
in Cv(z) to have bad reduction.

In this paper, we will consider only polynomial functions φ of degree at least 2; that is,
φ(z) = adz

d + · · ·+ a0, where d ≥ 2, ai ∈ Cv, and ad 6= 0. If Cv is non-archimedean, then,
it is easy to check that φ has good reduction if and only if |ai|v ≤ 1 for all i and |ad|v = 1.
In particular, by the product formula, if φ ∈ K[z] for a global field K, then there can be
only finitely many primes v ∈MK at which φ has bad reduction.

The main focus of our investigation will be filled Julia sets. The motivating idea is that
for a polynomial φ, all of the interesting dynamics involves points that do not escape to
the attracting fixed point at ∞ under iteration. We rephrase the standard definition from
complex dynamics more generally to include the non-archimedean setting, as follows.

Definition 2.2. Let Cv be a complete, algebraically closed field with absolute value | · |v,
and let φ(z) ∈ Cv[z] be a polynomial of degree d ≥ 2. The filled Julia set of φ at v is

Kv = {x ∈ Cv : {|φn(x)|v}n≥1 is bounded}.

We note four fundamental properties of filled Julia sets. First, Kv is invariant under φ;
that is, φ−1(Kv) = φ(Kv) = Kv. Second, all the finite preperiodic points of φ (that is, all
the preperiodic points in P1(Cv) other than the fixed point at ∞) are contained in Kv.
Third, if U0 is a disk containing Kv, then Kv =

⋂
n≥0 φ

−n(U0). Finally, if the polynomial

φ ∈ Cv[z] has good reduction, then Kv = D(0, 1).
Filled Julia sets have been studied extensively in the archimedean case Cv = C. If

φd(z) = zd, then the (complex) filled Julia K of φd is simply the closed unit disk D(0, 1).
Meanwhile, since the degree d Chebyshev polynomial ψd satisfies ψd ◦ h = h ◦ φd, where
h(z) = z + 1/z, it follows that the complex filled Julia set of ψd is the interval [−2, 2] in
the real line. These two examples are misleadingly simple, however; most filled Julia sets
are complicated fractal sets. For example, for |c| > 2, the filled Julia set of φ(z) = z2 + c is
homeomorphic to the Cantor set. For more complex examples (sometimes of the Julia set,
which is the boundary of the filled Julia set), see [4, 10, 21].

On the other hand, while complex filled Julia sets are always compact, their non-
archimedean counterparts are not usually compact. Fortunately, this technicality will not
be an obstacle for our investigations. For the convenience of the reader, we present a few
examples of non-archimedean filled Julia sets here. More examples may be found in [6, 30].
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Example 2.3. Given Cv non-archimedean and d ≥ 2 with |d − 1|v = 1, fix c ∈ Cv, and
consider φ(z) = zd− cd−1z. If |c|v ≤ 1, then φ has good reduction, and hence Kv = D(0, 1).
Thus, we consider |c|v > 1; let r = |c|v and U0 = D(0, r). Note that for |x|v > r, we have
|φ(x)|v = |x|dv, so that φn(x)→∞. That is, Kv ⊆ U0.

The set φ−1(0) consists of d points, all distance r from one another. Using standard non-
archimedean mapping properties (see, for example, Section 2 of [7]), it is not hard to show
that φ−1(U0) consists of d disks of radius r2−d, each centered at one of the points of φ−1(0).
Moreover, each of these smaller disks maps one-to-one and onto U0, and in fact φ multiplies
distances by a factor of rd−1 = |φ′(0)|v on each smaller disk. It follows that Un = φ−n(U0)
is a union of dn disks, each of radius r1−(d−1)n. (The sets Un are nested so that each disk
of Un contains exactly d disks of Un+1, arranged so that any two are the maximal distance
r1−(d−1)n apart.) It is then easy to verify that Kv =

⋂
Un is homeomorphic to a Cantor set

on d intervals (which, incidentally, is homeomorphic to the standard Cantor set).

Example 2.4. Given Cv non-archimedean and d ≥ 3 with |d − 1|v = 1, fix a ∈ Cv, and
consider φ(z) = zd−azd−1. If |a|v ≤ 1, then φ has good reduction, and hence Kv = D(0, 1).
Once again, then, we consider |a|v > 1 and set r = |a|v, so that Kv ⊆ U0 = D(0, r).

This time, however, φ−1(U0) consists of only two disks. One, W1 = D(a, r−(d−2)), is small
and maps one-to-one onto U0; but the other, W2 = D(0, 1), is comparatively large, and it
maps (d − 1)-to-1 onto U0. Because of the fixed critical point at 0, we see that φ−2(U0)
consists of two disks inside W1 (one mapping to W1, and the other to W2), and d disks
inside W2 (d − 1 mapping to W1, and the last mapping (d − 1)-to-1 to W2). In general,
each Un = φ−n(U0) will be a union of disks. Each disk of Un−1 has one preimage in Un

inside W1 and (with one exception) d − 1 preimages inside W2. The exception is the disk
Dn−1 of Un−1 containing 0; it has only one preimage Dn inside W2, mapping (d− 1)-to-one
onto Dn−1. Ultimately Kv consists of the disk V = D(0, r−1/(d−2)) and all of its preimages
together with a vaguely Cantor-like set at which the preimages of V accumulate.

Thus, in contrast with Example 2.3, Kv is neither a disk nor compact. In general, the
filled Julia set of a polynomial of bad reduction over Cv will look something like this one.
However, the dynamics can be even more complicated when there are regions on which φ
maps n-to-1 for some integer n divisible by p, the characteristic of the residue field kv.

The preceding comments and examples made frequent reference to disks U0 containing
Kv. The smallest such disk will be of particular importance to us. The following Lemma
shows the existence of the smallest disk and gives a partial characterization of it.

Lemma 2.5. Let Cv be a complete, algebraically closed field with absolute value | · |v. Let
φ ∈ Cv[z] be a polynomial of degree d ≥ 2 with lead coefficient ad ∈ Cv. Denote by Kv the
filled Julia set of φ in Cv. Then:

a. There is a unique smallest disk U0 ⊆ Cv which contains Kv.

b. U0 is a closed disk of some radius r′v ∈ |C×v |v, with r′v ≥ |ad|
−1/(d−1)
v .

c. If | · |v is non-archimedean, then φ has potentially good reduction if and only if

r′v = |ad|−1/(d−1)v . In that case, Kv = U0.

Proof. Choose α ∈ Cv such that αd−1 = ad, and let ψ(z) = αφ(α−1z), which is a monic

polynomial with filled Julia set αKv. Given the scaling factors of |ad|−1/(d−1)v = |α|−1v in
parts (b) and (c), we may assume without loss that ad = 1.
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If Cv is archimedean, then Cv
∼= C. In that case, Kv ⊆ C is a compact set. (See, for

example, Lemma 9.4 of [21].) Since Kv is bounded, there is a unique smallest disk U0

containing Kv. (See, for example, Exercise 3 in Appendix I of [34].) Moreover, because Kv

is compact, this disk must be closed.
The filled Julia set of a monic polynomial over C has capacity 1; see, for example, Theo-

rem 4.1 of [3]. Meanwhile, the capacity of the disk U0 is exactly its radius rv. Since U0 ⊇ Kv,
we must have rv ≥ 1, proving the Lemma in the archimedean case. (See Remark 2.6 below
for an alternate proof not using capacity theory.)

If Cv is non-archimedean, then let b ∈ Cv be a fixed point of φ. (Such b exists because
φ(z) − z is a polynomial of degree d ≥ 2.) Clearly b ∈ Kv. By the coordinate change
z 7→ z + b, we may assume that b = 0. Write φ(z) = zd + ad−1z

d−1 + · · · + a1z. Let

r̃v = max{|ai|1/(d−i)v : i = 1, . . . , d− 1} and rv = max{r̃v, 1}; note that rv ∈ |C×v |v.
If rv = 1, then φ is a monic polynomial with coefficients in Ov. Hence, φ has good

reduction; with U0 = D(0, 1), the Lemma follows.
For the remainder of the proof, assume rv > 1. Then the Newton polygon (see Section 6.5

of [14] or Section IV.3 of [18]) for the equation φ(z) = 0 shows that there is some c ∈ Cv

with |c|v = rv and φ(c) = 0. In particular, any disk containing Kv must contain D(0, rv).
Moreover, if |z|v > rv, then the zd term has larger absolute value than any other term

of φ(z), so that |φ(z)|v = |z|dv. By induction, |φn(z)|v = |z|dnv for all n ≥ 1. It follows that
Kv ⊆ D(0, rv). By the previous paragraph, D(0, rv) is the smallest disk U0 containing Kv.

On the other hand, for any x ∈ Cv with rv < |x|v ≤ rdv , all preimages of x lie in U0.
Thus, Kv ( U0. However, if φ had potentially good reduction, then Kv would be a disk,
since a polynomial of good reduction has filled Julia set equal to D(0, 1). Since U0 is the
smallest disk containing Kv, φ does not have potentially good reduction. �

Remark 2.6. The fact that rv ≥ 1 in the archimedean case can also be proven directly,
without reference to the power of capacity theory. The following alternate argument was
suggested to the author by Laura DeMarco.

Suppose that Kv ⊆ D(a, rv) for some rv < 1; let s = (1 + rv)/2. Since φ is a (monic)
polynomial of degree at least 2, there is some radius R > 1 such that for all z ∈ C with
|z − a| > R, we have |φ(z) − a| > R. Let A = {z ∈ C : s ≤ |z − a| ≤ R}. Every point of
the annulus A is attracted to ∞ under iteration of φ. Since A is compact, there is some
n ≥ 1 such that f(z) = φn(z) − a has |f(z)| > 1 for all z ∈ A. Note that all dn zeros of
f lie in D(a, s). Let g(z) = (z − a)d

n − f(z), which is a polynomial of degree strictly less
than dn. However, for all z ∈ C with |z − a| = s, we have

|f(z) + g(z)| = |z − a|dn = sd
n

< 1 < |f(z)|.
By Rouché’s Theorem (noting that g(z) 6= 0 for |z−a| = s), f and g have the same number
of zeros in D(a, s), counting multiplicity. That is a contradiction; thus, rv ≥ 1.

The next two Lemmas give slightly more detailed information about the filled Julia set
for a polynomial of bad reduction over a non-archimedean field.

Lemma 2.7. With notation as in Lemma 2.5, suppose that Cv is non-archimedean and

r′v > |ad|
−1/(d−1)
v . Then φ−1(U0) is a disjoint union of closed disks D1, . . . , D` ⊆ U0, where

2 ≤ ` ≤ d. Moreover, there are positive integers d1, . . . , d` with d1 + · · ·+ d` = d such that
for each i = 1, . . . , `, φ maps Di di-to-1 onto U0. That is, φ(Di) = U0, and every point U0

has exactly di pre-images in Di, counting multiplicity.
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Proof. By the proof of Lemma 2.5 in the rv > 1 case, we have φ−1(U0) ( U0.
We now construct the disks D1, . . . , D` inductively. For each i = 1, 2, . . ., suppose we

already have D1, . . . , Di−1, and choose bi ∈ φ−1(U0) \ (D1 ∪ · · · ∪ Di−1). (If this is not
possible, then skip to the next paragraph.) By Lemmas 2.3 and 2.6 of [7], there is a unique
disk Di containing bi which maps onto U0, and this disk must be closed. Since Dj was
also unique for each j < i, the new disk Di must be disjoint from Dj. In addition, by
Lemma 2.2 of [7], φ maps Di di-to-1 onto U0, for some integer di ≥ 1.

This process must stop with ` ≤ d, because for any a ∈ U0, φ
−1(a) consists of exactly d

points, counting multiplicity, and since each di ≥ 1, at least one must be contained in each
Di. Counting elements of φ−1(a) also shows that d1 + · · ·+ d` = d.

Finally, if ` = 1, then D1 = φ−1(U0) ( U0 is a single disk. Thus, Kv = φ−1(Kv) ⊆ D1;
but U0 was by definition the smallest disk containing Kv. Hence, we must have ` ≥ 2. �

Lemma 2.8. Let K be a field with a discrete valuation v, and let πv ∈ K be a uniformizer
at v. Let Cv be the completion of an algebraic closure of K. Let φ(z) = adz

d+· · ·+a0 ∈ K[z]
be a polynomial of degree d ≥ 2. Denote by Kv the filled Julia set of φ in Cv, and let r′v > 0

be the radius of the smallest disk in Cv containing Kv. Suppose that r′v > |ad|
−1/(d−1)
v . If

Kv ∩K 6= ∅, then

|ad|1/(d−1)v r′v ≥

{
|πv|−1v if d = 2,

|πv|−1/[(d−1)(d−2)]v if d ≥ 3.

Proof. Given b ∈ Kv ∩K, we may replace φ by φ(z + b)− b ∈ K[z], which is a polynomial
with the same degree and lead coefficient as φ, but with filled Julia set translated by −b.
In particular, the radius r′v is preserved; so we may assume without loss that 0 ∈ Kv.

As in the proof of Lemma 2.5, choose α ∈ Cv such that αd−1 = ad, and let

ψ(z) = αφ(α−1z) = zd +
d−1∑
i=0

α1−iaiz
i.

Then ψ is a monic polynomial with filled Julia set K′v = αKv; hence, the radius rv of the
smallest disk containing K′v satisfies rv > 1. However, ψ may not be defined over K.

Let j be the largest index between 0 and d−1 that maximizes λj = |α1−jaj|1/(d−j)v . Note
that λj > 1; for if not, then ψ has good reduction, contradicting Lemma 2.5.c. The Newton
polygon for the equation ψ(z) = 0 shows that there is some β ∈ Cv with ψ(β) = 0 and
|β|v = λj. We have 0, β ∈ K′v; hence, rv ≥ λj.

If j = 0, then a simple induction shows that |ψn(0)|v = |αa0|d
n−1

v for n ≥ 1. Since
|αa0|v > 1, this contradicts the hypothesis that 0 ∈ K′v.

Thus, 1 ≤ j ≤ d− 1, and we write |ad|v = |πv|e1v and |aj|v = |πv|e2v ; note that e1, e2 ∈ Z.
Our assumptions say that

rv ≥ λj = |α1−jaj|1/(d−j)v = |πv|fv > 1, where f =
1

d− j

(
(1− j)e1
d− 1

+ e2

)
< 0.

If j = 1, then f = e2/(d − 1) ≤ −1/(d − 1), which proves the Lemma for d = 2. If
2 ≤ j ≤ d− 1, then f ≤ −1/[(d− 1)(d− j)] ≤ −1/[(d− 1)(d− 2)], and we are done. �

Remark 2.9. The bounds of Lemma 2.8 are sharp. Indeed, one can check that they are
attained by φ(z) = z2 − π−1v z for d = 2 and by φ(z) = πd

vz
d − πvz2 for d ≥ 3.
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3. Elementary Computations

We will now define and bound certain integer quantities that will appear as exponents
in the rest of the paper. The reader is encouraged to read the statements of Definition 3.1,
Lemma 3.4, and Lemma 3.5 but to skip the proofs, which are tedious but completely
elementary, until after seeing their use in Theorem 7.1.

We will write logd x to denote the logarithm of x to base d.

Definition 3.1. Let N ≥ 0 and d ≥ 2 be integers. We define E(N, d) to be twice the sum
of all base-d coefficients of all integers from 0 to N − 1. That is,

E(N, d) = 2
N−1∑
j=0

e(j, d), where e

(
M∑
i=0

cid
i, d

)
=

M∑
i=0

ci,

for ci ∈ {0, 1, . . . , d− 1}.
Moreover, if m is an integer satisfying 1 ≤ m ≤ d, we may write N = c0 +mk for unique

integers c0 ∈ {0, 1, . . . ,m− 1} and k ≥ 0. We then define

e(N,m, d) = c0 + e(k, d)− (d−m)k and f(N,m, d) = c0 + e(k, d),

and

E(N,m, d) = 2
N−1∑
j=0

e(j,m, d) and F (N,m, d) = 2
N−1∑
j=0

f(j,m, d).

We declare E(N, d) = E(N,m, d) = F (N,m, d) = 0 for N ≤ 1. Clearly, E(N, d) and
F (N,m, d) are always positive for N ≥ 1; but for N large and m < d, E(N,m, d) is
negative. Note that e(N, d, d) = f(N, d, d) = f(N, 1, d) = e(N, d), and therefore

(3) E(N, d, d) = F (N, d, d) = F (N, 1, d) = E(N, d).

We will need the following two auxiliary Lemmas.

Lemma 3.2. Let N,m, d be integers satisfying N ≥ 1, d ≥ 2, and 1 ≤ m ≤ d. Write
N = c+mk with 0 ≤ c ≤ m− 1 and k ≥ 0. Then:

a. F (N,m, d) = (m− c)E(k, d) + cE(k + 1, d) + (m− 1)N − c(m− c).

b. E(N,m, d) = F (N,m, d)− (d−m)

m
[N2 −mN + c(m− c)].

c. If N ≤ m, then E(N,m, d) = F (N,m, d) = N(N − 1).

Proof. Writing an arbitrary integer j ≥ 0 as j = i+m` for 0 ≤ i ≤ m− 1, we compute

F (N,m, d) = 2
N−1∑
j=0

f(j,m, d) = 2
c−1∑
i=0

k∑
`=0

f(i+m`,m, d) + 2
m−1∑
i=c

k−1∑
`=0

f(i+m`,m, d)

= 2
c−1∑
i=0

k∑
`=0

(i+ e(`, d)) + 2
m−1∑
i=c

k−1∑
`=0

(i+ e(`, d))

=
c−1∑
i=0

[2(k + 1)i+ E(k + 1, d)] +
m−1∑
i=c

[2ki+ E(k, d)]

= cE(k + 1, d) + (m− c)E(k, d) + (k + 1)c(c− 1) + km(m− 1)− kc(c− 1).
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Part (a) of the Lemma now follows by rewriting the last three terms as

c(c− 1) +mk(m− 1) = c(c−m) + (c+mk)(m− 1) = (m− 1)N − c(m− c).
Next, we compute

E(N,m, d) = 2
N−1∑
j=0

e(j,m, d) = 2
N−1∑
j=0

f(j,m, d)− 2(d−m)

[
m

k−1∑
`=0

`+
c−1∑
j=0

k

]
= F (N,m, d)− k(d−m)[m(k − 1) + 2c]

Writing k = (N − c)/m, the last term becomes

−(N − c)
m

(d−m)(N + c−m) = −(d−m)

m
[N2 −mN + c(m− c)],

proving part (b). Finally, part (c) is immediate from the fact that e(j,m, d) = f(j,m, d) = j
for 0 ≤ j ≤ m− 1. �

Lemma 3.3. Let N,m, d be integers satisfying N ≥ 1, d ≥ 2, and 1 ≤ m ≤ d. Write
N = c+mk with 0 ≤ c ≤ m− 1 and k ≥ 0. Then:

a. (m− c) logd

(
mk

N

)
+ c logd

(
mk +m

N

)
≤ 0.

b. If N ≥ d, then (d− 1) logd

(
mk +m

N

)
− (m− c) ≤ 0.

Proof. The function logd(x) is of course concave down. Letting x1 = mk/N and x2 =
(mk +m)/N , then, we have x1 ≤ 1 < x2, and therefore logd(1) ≥ L(1), where

L(x) =
1

x2 − x1
[(x2 − x) logd(x1) + (x− x1) logd(x2)]

is the line through (x1, logd(x1)) and (x2, logd(x2)). That is,

0 ≥ 1

m

[
(m− c) logd

(
mk

N

)
+ c logd

(
mk +m

N

)]
,

proving part (a). For part (b), we have

(d− 1) logd

(
mk +m

N

)
=

(d− 1)

log d
· log

(
1 +

m− c
N

)
≤ (d− 1)

log d
· (m− c)

N
.

However, log d = − log[1− (d− 1)/d] ≥ (d− 1)/d, and since N ≥ d,

(d− 1) logd

(
mk +m

N

)
≤ (d− 1) · d

d− 1
· m− c

N
=

d

N
(m− c) ≤ (m− c). �

Lemma 3.4. Let N,m, d be integers satisfying N ≥ 1, d ≥ 2, and 1 ≤ m ≤ d− 1. Then:

a. E(N, d) ≤ (d− 1)N logdN , with equality if N is a power of d.

b. E(N,m, d) ≤ (d−1)N

[
logdN + 1− logdm−

(d−m)

m(d− 1)
N

]
, with equality if N/m

is a power of d.
c. F (N,m, d) ≤ (d− 1)N logdN .

d. For N ≥ m, F (N,m, d) ≤ (d − 1)N

[
logdN − logdm+

m− 1

d− 1

]
, with equality if

N/m is a power of d.
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Proof. Fix d ≥ 2. If N = 1, then both sides of part (a) are clearly zero. If 2 ≤ N ≤ d, then
E(N, d) = N(N−1) by Lemma 3.2.c (with m = d) and equation (3). Because (log x)/(x−1)
is a decreasing function of the real variable x > 1, we have (log d)/(d−1) ≤ (logN)/(N−1),
with equality for N = d. Part (a) then follows for 1 ≤ N ≤ d.

For N ≥ d + 1, we proceed by induction on N , assuming part (a) holds for all positive
integers up to N − 1. Write N = c+ dk, where 0 ≤ c ≤ d− 1, so that 1 ≤ k ≤ N − 2. By
Lemma 3.2.a (with m = d) and equation (3), we have

E(N, d) = (d− c)E(k, d) + cE(k + 1, d) + (d− 1)N − c(d− c)
≤ (d− c)(d− 1)k logd k + c(d− 1)(k + 1) logd(k + 1) + (d− 1)N − c(d− c)
= (d− c)(d− 1)k logd(dk) + c(d− 1)(k + 1) logd(dk + d)− c(d− c)

where the final equality is because N = (d − c)k + c(k + 1), and the inequality (which is
equality if N is a power of d) is by the inductive hypothesis, since k, k + 1 ≤ N − 1. More
generally, adding and subtracting (d− 1)N logdN , we have

E(N, d) ≤ (d− 1)N logdN + (d− c)(d− 1)k logd

(
dk

N

)
+ c(d− 1)(k + 1) logd

(
dk + d

N

)
− c(d− c)

= (d− 1)N logdN + c

[
(d− 1) logd

(
dk + d

N

)
− (d− c)

]
.

+ (d− 1)k

[
(d− c) logd

(
dk

N

)
+ c logd

(
dk + d

N

)]
By Lemma 3.3 with m = d, the quantities in brackets are nonpositive, and part (a) follows.

If m = 1, then parts (c–d) are immediate from part (a) and equation (3). Moreover, by
Lemma 3.2.a–b (with m = 1) and part (a),

E(N, 1, d) = E(N, d)− (d− 1)N(N − 1) ≤ (d− 1)N [logdN + 1−N ],

with equality if N is a power of d. This is exactly part (b) for m = 1. Thus, we may
assume for the remainder of the proof that 2 ≤ m ≤ d.

We now turn to part (d). If N = m, then by Lemma 3.2.c, we have F (m,m, d) ≤
m(m − 1), which exactly equals the desired right hand side. For N ≥ m + 1, write
N = c+mk, where k ≥ 1 and 0 ≤ c ≤ m− 1. By Lemma 3.2.a,

(4) F (N,m, d) = (m− c)E(k, d) + cE(k + 1, d) + (m− 1)N − c(m− c).

If m+ 1 ≤ N ≤ d− 1, then k ≤ d− 1, so that by Lemma 3.2.c, equation (4) becomes

F (N,m, d) = (m− c)k(k − 1) + ck(k + 1) + (m− 1)N − c(m− c)
= mk2 −mk + 2ck + (m− 1)N − c(m− c) = (m+ k − 1)N − (m− c)(k + c)

= m−1
[
(N +m2 − c−m)N − (m− c)(N − c+ cm)

]
= m−1

[
(N +m2 − 2m)N − c(m− c)(m− 1)

]
≤ N [(N/m) +m− 2] ,

where we have substituted k = (N − c)/m along the way. Thus, we must show

N [(N/m) +m− 2] ≤ N [(d− 1) logd(N/m) +m− 1] .
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Equivalently, we must show
log d

d− 1
≤ log(N/m)

(N/m)− 1
,

which is true because (log x)/(x− 1) is a decreasing function of x > 1, and 1 < N/m < d.
If N ≥ d in part (d), then k ≥ 1. Applying part (a) to equation (4), we obtain

(5) F (N,m, d) ≤ (m− c)(d− 1)k logd k + c(d− 1)(k + 1) logd(k + 1)

+ (m− 1)N − c(m− c),
with equality if c = 0 and k is a power of d, whence we immediately obtain the statement
of the Lemma for N = mdi. More generally, (5) becomes

F (N,m, d) ≤ (d− 1)N

(
logd

N

m
+
m− 1

d− 1

)
+ (m− c)(d− 1)k logd

(
mk

N

)
+ c(d− 1)(k + 1) logd

(
mk +m

N

)
− c(m− c)

= (d− 1)N

(
logd

N

m
+
m− 1

d− 1

)
+ c

[
(d− 1) logd

(
mk +m

N

)
− (m− c)

]
+ (d− 1)k

[
(m− c) logd

(
mk

N

)
+ c logd

(
mk +m

N

)]
.

Part (d) now follows from Lemma 3.3, as before.
For part (c), if 1 ≤ N ≤ m, then by part (a) and Lemma 3.2.c,

F (N,m, d) = N(N − 1) = E(N, d) ≤ (d− 1)N logdN,

as desired. The remaining case, that N ≥ m, will follow from part (d) provided

m− 1 ≤ (d− 1) logdm.

However, this is the same as showing that log d/(d− 1) ≤ logm/(m− 1), which once again
follows from the fact that (log x)/(x− 1) is decreasing for x > 1.

Last, we turn to part (b). If 1 ≤ N ≤ m, then E(N,m, d) = N(N − 1) by Lemma 3.2.c.
Thus, we wish to show that

N − 1 ≤ (d− 1)

(
1 + logd

N

m

)
− (d−m)

N

m
,

which is to say
dN

m
− 1 ≤ (d− 1) logd

(
dN

m

)
,

with equality when N = m. Yet again, this inequality follows immediately from the facts
that (log x)/(x− 1) is decreasing for x > 1 and that 1 ≤ dN/m ≤ d.

It only remains to consider N ≥ m + 1. Writing N = c + mk, where k ≥ 1 and
0 ≤ c ≤ m− 1, and invoking Lemma 3.2.b, we have

E(N,m, d) = F (N,m, d)− (d−m)

m
[N2 −mN + c(m− c)]

≤ F (N,m, d)− (d−m)

m
N2 + (d−m)N,
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with equality for c = 0. By part (d), we obtain

E(N,m, d) ≤ (d− 1)N

[
logdN − logdm+

m− 1

d− 1

]
− (d−m)

m
N2 + (d−m)N

= (d− 1)N

[
logdN − logdm+ 1− d−m

m(d− 1)
N

]
,

with equality if N is of the form N = mdi. �

Besides the preceding integer quantities and their bounds, we will need the following
bound involving a certain family of real-valued functions.

Lemma 3.5. Let d ≥ 2 be an integer, and let A,B, t be positive real numbers such that

(d− 1)A ≥ dB−1 and t ≥ 1.

Define η : (0,∞)→ R by

η(x) = t logd x− Ax+B.

Set the real number M(A,B, t) to be

M(A,B, t) =
t

A
(logd t+ logd(max{1, logd t}) + 3) .

Then η(x) < 0 for all x ≥M(A,B, t).

Proof. By differentiating, we see that η is decreasing for x ≥ t/(A log d), and hence for
x ≥M(A,B, t). Thus, it suffices to show that η(M(A,B, t)) < 0.

First, suppose that t < d. Then

η(M(A,B, t)) = t logd t+ t logd

[
A−1(logd t+ 3)

]
− t logd t− 3t+B

= t logd

[
A−1dB−3(logd t+ 3)

]
−B(t− 1) ≤ t logd

[
(d− 1)(logd t+ 3)/d2

]
,

where the inequality is because A−1dB−1 ≤ (d − 1) and B > 0, by hypothesis. Since
t < d, the quantity inside square brackets is strictly less than 4(d − 1)/d2 ≤ 1. Thus,
η(M(A,B, t)) < t logd(1) = 0, and we are done.

Second, if t ≥ d, then by a similar computation,

η(M(A,B, t)) = t logd

[
A−1dB−3u−1(u+ logd u+ 3)

]
−B(t− 1)

< t logd

[
(d− 1)(u+ logd u+ 3)/(d2u)

]
where u = logd t ≥ 1. Writing H(u) = (d− 1)(u+ logd u+ 3)/(d2u), it suffices to show that
H(u) ≤ 1 for u ≥ 1. Differentiating, it is easy to see that H is decreasing for such u. Since
H(1) = 4(d− 1)/d2 ≤ 1, we are done. �

4. Transfinite Diameters and Bad Primes

Given a metric space X and an integer N ≥ 2, the N th diameter of X is defined to be

dN(X) = sup
x1,...,xN∈X

∏
i 6=j

dX(xi, xj)
1/[N(N−1)],
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which measures the maximal average distance between any two of N points in X. (See [15],
for example, for a computation of the N th diameter of the interval [0, 1].) This quantity is
usually used to define the transfinite diameter of X,

d(X) = lim
N→∞

dN(X),

which converges because {dN(X)}N≥2 is a decreasing sequence. If X is a nice enough
(e.g., compact) subset of a valued field, then the transfinite diameter coincides with the
Chebyshev constant and the logarithmic capacity of X; see Section 5.4 of [1], or Chapters 3
and 4 of [32]. Baker and Hsia used this equality in [3] to compute the transfinite diameter
of filled Julia sets of polynomials, even when those sets are not compact. (Their result of

|ad|−1/(d−1)v , where d is the degree and ad the lead coefficient of the polynomial, was already
well known for Cv = C.) See [32] for more on transfinite diameters and capacities in Cv.

However, in this paper we will be interested in the N th diameters dN(X) themselves,
rather than the transfinite diameter. In particular, the following Lemma contains our main
bound for dN(Kv)

N(N−1), where Kv is the filled Julia set of a polynomial φ ∈ Cv[z]. The
proof uses an estimate involving van der Monde determinants similar to a bound that
appears in the proof of Lemme 5.4.2 in [1].

Lemma 4.1. Let Cv be a complete, algebraically closed field with absolute value | · |v. Let
φ ∈ Cv[z] be a polynomial of degree d ≥ 2 with lead coefficient ad ∈ Cv. Denote by Kv the
filled Julia set of φ in Cv, and let r′v be the radius of the smallest disk that contains Kv.

Set rv = |ad|1/(d−1)v r′v.
Then for any integer N ≥ 2 and any set {x1, . . . , xN} ⊆ Kv of N points in Kv,∏

i 6=j

|xi − xj|v ≤ |ad|−N(N−1)/(d−1)
v max{1, |N |Nv }rE(N,d)

v ,

where E(N, d) is twice the sum of all base-d coefficients of all integers from 0 to N − 1, as
in Definition 3.1.

Proof. Choose α ∈ Cv such that αd−1 = ad, and let ψ(z) = αφ(α−1z). Then ψ is a monic
polynomial with filled Julia set K′v = αKv, and the smallest disk containing K′v has radius
rv. If the Lemma holds for ψ, then for x1, . . . , xN ∈ Kv, we have αxi ∈ K′v, and therefore∏

i 6=j

|xi − xj|v = |α|−N(N−1)
v

∏
i 6=j

|αxi − αxj|v ≤ |α|−N(N−1)
v max{1, |N |Nv }rE(N,d)

v ,

as desired. Thus, it suffices to prove the Lemma in the case that φ is monic.
We will now construct a sequence {fj}∞j=1 of monic polynomials over Cv such that each

fj has degree j and such that |fj(x)|v is not especially large for any x ∈ Kv.
First, let D(a, rv) be the smallest disk containing Kv, where a ∈ Cv and rv is as in the

statement of the Lemma. For any integer j ≥ 0 written in base-d notation as

j = c0 + c1d+ c2d
2 + · · ·+ cMd

M ,

with ci ∈ {0, 1, . . . , d− 1}, define

fj(z) =
M∏
i=0

[φi(z)− a]ci .
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Clearly, fj is monic of degree j. Moreover, for x ∈ Kv, we have φi(x) ∈ Kv, and therefore

|fj(x)|v ≤
M∏
i=0

rciv = re(j,d)v ,

where e(j, d) is as in Definition 3.1.
Given x1, . . . , xN ∈ Kv, denote by V (x1, . . . , xN) the corresponding van der Monde matrix

(i.e., the N ×N matrix with (i, j) entry xj−1i ). Recall that∏
i 6=j

|xi − xj|v = | detV (x1, . . . , xN)|2v.

Because fN−1 is monic, we may replace the last column of the matrix by a column with
entry fN−1(xi) in the ith row, without changing the determinant. We may then replace the
second to last column by a column with entry fN−2(xi) in the ith row, and so on. Thus, if
we denote by A(x1, . . . , xN) the matrix with (i, j) entry fj−1(xi), then

detV (x1, . . . , xN) = detA(x1, . . . , xN).

If Cv = C is archimedean, then by Hadamard’s inequality applied to the columns of A,

| detA(x1, . . . , xN)|2 ≤
N−1∏
j=0

(
|fj(x1)|2 + · · ·+ |fj(xN)|2

)
≤

N−1∏
j=0

Nr2e(j,d)v = NNrE(N,d)
v .

Similarly, if Cv is non-archimedean, then by the non-archimedean version of Hadamard’s
inequality (see, for example, [1], Preuve du Lemme 5.3.4), we have

| detA(x1, . . . , xN)|2 ≤
N−1∏
j=0

max
i=1,...,N

|fj(xi)|2 ≤
N−1∏
j=0

r2e(j,d)v = rE(N,d)
v . �

Remark 4.2. We can recover the Baker and Hsia bound d(Kv) ≤ |ad|−1/(d−1)v immediately
from Lemmas 4.1 and 3.4.a. (The opposite inequality is more subtle, however.)

Remark 4.3. There are many cases for which the bound of Lemma 4.1 is sharp. In
particular, for non-archimedean v, degree d ≥ 2 with |d− 1|v = 1, and c ∈ Cv with |c| > 1,
recall that the function φ(z) = zd−cd−1z of Example 2.3 has Kv homeomorphic to a Cantor
set on d pieces. For arbitrary N ≥ 2, one can distribute N points in Kv in the following way.
Write N =

∑M
i=0 cid

i, and put cM points in each of the dM pieces at level M , maximally
far apart in each piece; then put cM−1 in each of the dM−1 pieces at level M − 1, each as
far as possible from the existing points; and so on. Keeping track of the radii of the disks

at each level, one can show that
∏

i 6=j |xi − xj|v = r
E(N,d)
v exactly.

In many other cases, however, the bound is not quite sharp, though it appears to be
approximately the right order of magnitude. In the archimedean case, of course, the
Hadamard inequality introduces some error. Still, the greater factor seems to be the choice
of the monic polynomial fj. When j is a power of d, computations suggest that our choice
of fj is very close to sharp, if not actually sharp. However, when j is not a power of d,
our construction of fj as a product of smaller factors is in general not optimal, even in the
non-archimedean setting. For example, if φ(z) = z3− az2 is the map of Example 2.4 (non-
archimedean, with d = 3, |a|v > 1, and |2|v = 1), then the function f6(z) = (φ(z))2 of the

proof has |f6(z)|v growing as large as r2 on Kv; but the function f̃6(z) = (φ(z)) · (φ(z)− a)
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has |f̃6(z)|v ≤ r. Ultimately, while the exponent E(N, 3) of Lemma 4.1 is essentially
2N log3N , the actual exponent for this φ should be something more like (4/3)N log3N .

In the archimedean case, the Chebyshev polynomials {ψj}j≥1 provide an even stronger
example of this phenomenon. More precisely, if Cv = C and φ(z) = ψ2(z) = z2 − 2, then
Kv is simply the interval [−2, 2] in the real line. For j ≥ 1, the jth Chebyshev polynomial
ψj has |ψj| ≤ 2 on Kv, as compared with the proof’s bound of 2c0+c1+··· for |fj|.

In general, however, knowing nothing about the polynomial other than its degree and
the radius rv, we cannot substantially improve on Lemma 4.1.

5. A Partition of the Filled Julia Set: Non-archimedean Case

The key to the Main Theorem, as described in the introduction, is to divide the filled Julia
set at a particular bad prime into two smaller pieces X1 and X2. As a result, the product∏

i 6=j |xi − xi|v, when restricted to {xi} ⊆ Xk (for fixed k = 1, 2), will be substantially
smaller than the bound of Lemma 4.1. We begin with non-archimedean primes.

Lemma 5.1. Let Cv be a complete, algebraically closed field with non-archimedean absolute
value | · |v. Let φ ∈ Cv[z] be a polynomial of degree d ≥ 2 with lead coefficient ad ∈ Cv.
Denote by Kv the filled Julia set of φ in Cv, and let r′v be the radius of the smallest disk U0

that contains Kv. Set rv = |ad|1/(d−1)v r′v, and suppose that rv > 1.
Then there are disjoint sets X1, X2 ⊆ Kv and positive integers m1,m2 with the properties

that X1 ∪X2 = Kv, that m1 +m2 = d, that for k = 1, 2, φ : Xk � Kv is mk-to-1, and that
for k = 1, 2, for any integer N ≥ 2, and for any set {x1, . . . , xN} ⊆ Xk of N points in Xk,∏

i 6=j

|xi − xj|v ≤ |ad|−N(N−1)/(d−1)
v rE(N,mk,d)

v ,

where E(N,mk, d) is as in Definition 3.1.

Proof. As in the proof of Lemma 4.1, we may assume that φ is monic.
By Lemma 2.5, U0 is a closed disk of radius rv ∈ |C×v |v. We may write U0 = D(a, rv) for

some point a ∈ Kv, since Kv is nonempty, and since any point of a non-archimedean disk
is a center. Pick b ∈ φ−1(a). Note that b ∈ Kv ⊆ U0.

Write U1 = φ−1(U0). By Lemma 2.7, U1 = D1 ∪ · · · ∪D` for some disjoint closed disks
{Di}, with 2 ≤ ` ≤ d. Moreover, φ : Di � U0 maps di-to-one for some positive integers
{di} with d1 + · · ·+ d` = d. Define

W1 = {x ∈ U1 : |x− b|v < rv}, and W2 = U1 \W1,

so that W1∩W2 = ∅ and W1∪W2 = U1. If W2 = ∅, then Kv ⊆ D(b, rv) ( U0, contradicting
the minimality of U0. (The second inclusion is strict because rv ∈ |C×v |v.) Thus, since
b ∈ W1, both W1 and W2 are nonempty.

Furthermore, W1 and W2 are both finite unions of disks Di above. Hence, there are
integers m1,m2 ≥ 1 so that each Wk maps mk-to-one onto U0, with m1 + m2 = d. Let
Xk = Wk ∩ Kv for k = 1, 2. Since φ−1(Kv) = Kv, φ must map Xk mk-to-one onto Kv.

For any integer i ≥ 1, observe that the polynomial φi(z) − a is monic of degree di.
Moreover, since the equation φi−1(z) = a has exactly di−1 roots (counting multiplicity), all
of which lie in U0, it follows that φi(z) = a has m1d

i−1 roots in W1 and m2d
i−1 roots in

W2, counting multiplicity. Thus, we may write

φi(z)− a = gi(z)hi(z)
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where gi is monic of degree m1d
i−1 with all its roots in W1, and hi is monic of degree m2d

i−1

with all its roots in W2. In addition, define g0(z) = h0(z) = z − a.
We will now use the polynomials gi to compute the bounds given in the Lemma for X1;

the proof for X2 is similar, using hi. To simplify notation, write X = X1 and m = m1.
For any integer j ≥ 0, write j = c0 +mk, and write k in base-d notation, so that

j = c0 +m(c1 + c2d+ c3d
2 + · · ·+ cMd

M−1),

with c0 ∈ {0, 1, . . . ,m− 1}, and with ci ∈ {0, 1, . . . , d− 1} for i ≥ 1. Define

fj(z) =
M∏
i=0

[gi(z)]ci .

Clearly, fj is monic of degree j. Meanwhile, for x ∈ X and i ≥ 1, observe that φi(x) ∈ Kv,
and therefore |φi(x)−a| ≤ rv. On the other hand, all roots of hi lie in W2, which is distance

rv from x; therefore, |hi(x)| = r
(d−m)di−1

v . It follows that

|gi(x)|v ≤ r1−(d−m)di−1

v

for all i ≥ 1. In addition, since X ⊆ U0, we have |g0(x)| ≤ rv. Thus,

|fj(x)|v ≤ rc0v

M∏
i=1

rci(1−(d−m)di−1)
v = rev,

where e = e(j,m, d) in the notation of Definition 3.1.
By the same van der Monde determinant argument as in the proof of Lemma 4.1, it

follows that if N ≥ 2 and x1, . . . , xN ∈ X, then∏
i 6=j

|xi − xj|v ≤ rE(N,m,d)
v . �

Remark 5.2. In some cases, Kv can be split into more than two pieces, each much smaller
than the X1, X2 of Lemma 5.1. For example, the filled Julia set of the map φ(z) = zd−cd−1z
of Example 2.3 breaks naturally into d pieces. Adapting the method of the Lemma for each
piece, we could ultimately replace the coefficient d2 − 2d+ 2 in Theorem 7.1 by d.

However, as previously noted, most polynomials are not so simple. Indeed, the filled Julia
set of φ(z) = zd−azd−1 from Example 2.4 splits into only two pieces. (Of course, if we take
a higher preimage Un in that example, we get more than two pieces; but because of the large
radii, there appears to be no improvement gained by using n > 1.) Even an application
of the arguments of Remark 4.3 would result in only a slight decrease in the coefficient
of N logdN in the exponent (cf. Lemma 3.4.b). Unfortunately, a real improvement would
require an increase in the size of the (negative) coefficient of N2, not the N logdN term.

6. A Partition of the Filled Julia Set: Archimedean Case

The final tool needed for Theorem 7.1 is an archimedean analogue of Lemma 5.1. Roughly
the same argument works, but only if the diameter of the filled Julia set K is large enough.
This phenomenon is familiar to complex dynamicists. For example, given φ(z) = z2 + c ∈
C[z], if the diameter of K is small, then c lies in the Mandelbrot set, in which case K is
connected. However, once the diameter is large enough, c leaves the Mandelbrot set and K
becomes disconnected. In fact, as the diameter grows, the various pieces of K shrink.
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We begin with the following preliminary result.

Lemma 6.1. Let φ ∈ C[z] be a polynomial of degree d ≥ 2 with lead coefficient ad ∈ C.
Denote by K the filled Julia set of φ in C, and let U0 = D(a, r′) be the smallest disk that
contains K. Set r = |ad|1/(d−1)r′, and suppose that

r >

{
3, if d = 2, or

2 +
√

3, if d ≥ 3.

Then K is contained in a union of d open disks of radius |ad|−1/(d−1).

Proof. As in the proof of Lemma 4.1, we may assume that φ is monic. Denote by b1, . . . , bd
the (possibly repeated) roots of φ(z) = a, and let D(c, s) be the smallest disk containing
b1, . . . , bd. (Here, we break our convention and allow s = 0 if b1 = · · · = bd.) Our first goal
is to show that s ≥ r − 1.

Because K is not contained in D(c, r), there must be some y0 ∈ K such that |y0− c| ≥ r.
Let Y = D(c, s) ∩D(y0, |y0 − c|). We claim that Y is contained in a disk of radius strictly
less than s (or that Y is empty, if s = 0). Indeed, if |y0 − c| < s, then Y ⊆ D(y0, |y0 − c|)
trivially. Otherwise, |y0−c| ≥ s, and since the center c of the first disk lies on the boundary
of the second, the intersection Y is contained in a strictly smaller disk. (For example, center
the new disk at the midpoint of the two intersection points of the two boundary circles.)

By the minimality of s, then, not all of b1, . . . , bd can be in Y . Thus, there is some
1 ≤ i ≤ d such that |y0 − bi| ≥ |y0 − c| ≥ r. Without loss, assume that |y0 − b1| ≥ r.

For all i ≥ 2, we have |y0 − bi| ≥ r − s, because bi ∈ D(c, s). Since y0 ∈ K, we have
φ(y0) ∈ K, and therefore |φ(y0)− a| ≤ r. If r − s ≥ 0, then, we have

r ≥ |φ(y0)− a| =
d∏

i=1

|y0 − bi| = |y0 − b1| ·
d∏

i=2

|y0 − bi| ≥ r · (r − s)d−1,

from which we obtain r − s ≤ 1. Regardless of the sign of r − s, then, we have s ≥ r − 1.
Re-index {b1, . . . , bd} (possibly changing the previous role of b1) so that b1 and bd are

distance max{|bi−bj|} apart, and so that for all i = 1, . . . , d−1, we have |bi+1−b1| ≥ |bi−b1|.
Note that |bd − b1| ≥

√
3s ≥

√
3(r − 1); see, for example, [34], Exercise 6-1.

If d = 2, we can improve this lower bound. In that case, the smallest disk containing b1
and b2 is the closed disk centered at (b1 +b2)/2 of radius |b1−b2|/2. That is, s = |b1−b2|/2.
It follows that |b1 − b2| = 2s ≥ 2(r − 1).

For all degrees d ≥ 2, we have r > 3, so that s > 2, and therefore the two disks D(b1, 1)
and D(bd, 1) are disjoint. Moreover, as y ranges through C \ [D(b1, 1) ∪ D(bd, 1)], the
minimum value of |y− b1| · |y− bd| is |b1− bd| − 1, attained at only two points, namely the
point on the boundary of each disk closest to the other disk.

Let U1 = φ−1(U0). Since K = φ−1(K) ⊆ U1, it suffices to show that

(6) U1 ⊆
d⋃

i=1

D(bi, 1).
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If not, then there is some y ∈ U1 \
⋃
D(bi, 1). If d ≥ 3, then by the above computations,

we have |y − b1| · |y − bd| ≥
√

3(r − 1)− 1. Since φ(y) ∈ U0, we obtain

r ≥ |φ(y)− a| =
d∏

i=1

|y − bi| ≥ (
√

3(r − 1)− 1)
d−1∏
i=2

|y − bi| ≥ (
√

3(r − 1)− 1),

contradicting the hypothesis that r > 2 +
√

3. Similarly, if d = 2, then

r ≥ |φ(y)− a| = |y − b1| · |y − b2| > 2(r − 1)− 1,

contradicting the hypothesis that r > 3, and proving the Lemma. �

Remark 6.2. Because Kv is compact for archimedean v, the conclusion of Lemma 6.1

implies that K is in fact contained in d closed disks of radius strictly less than |ad|−1/(d−1)v .
This fact will be useful in Cases 2 and 3 of the proof of Theorem 7.1.

We are now prepared to present our archimedean version of Lemma 5.1.

Lemma 6.3. Let φ ∈ C[z] be a polynomial of degree d ≥ 2 with lead coefficient ad ∈ C.
Denote by K the filled Julia set of φ in C, and let r′ be the radius of the smallest disk U0

that contains K. Set r = |ad|1/(d−1)r′ and

Cd = d−(d−2)/(d−1) ≤ min

{
1,

1.2

d− 1

}
.

Suppose that

r ≥


4 if d = 2√

3 + 2(d− 1)√
3− (d− 1)Cd

, if d ≥ 3.

Then there are disjoint sets X1, X2 ⊆ K and positive integers m1,m2 with the properties
that X1 ∪X2 = K, that m1 + m2 = d, that for k = 1, 2, φ : Xk � Kv is mk-to-1, and that
for k = 1, 2, for any integer N ≥ 2, and for any set {x1, . . . , xN} ⊆ Xk of N points in Xk,∏

i 6=j

|xi − xj| ≤ NN |ad|−N(N−1)/(d−1)C
−F (N,mk,d)
d (Cdr)

E(N,mk,d) ,

where E(N,mk, d) and F (N,mk, d) are as in Definition 3.1.

Proof. As in the proof of Lemma 4.1, we may assume that φ is monic. It is easy to check
that Cd ≤ min{1, 1.2/(d − 1)} (the closest approach for d ≥ 3 occurs at d = 5), and that
the lower bound (

√
3 + 2(d − 1))/(

√
3 − (d − 1)Cd) (respectively, 4) for r is greater than

2 +
√

3 (respectively, 3), so that we may invoke Lemma 6.1.
Write U0 = D(a, r), and define and order b1, . . . , bd as in the proof of Lemma 6.1, so that
|b1 − bd| ≥

√
3(r − 1) (or |b1 − bd| ≥ 2(r − 1), if d = 2).

If d ≥ 3, observe that for some m = 1, . . . , d− 1, we have

|bm+1 − b1| ≥ |bm − b1|+ 2 + Cdr.

For if not, then √
3(r − 1) ≤ |bd − b1| < (d− 1) [2 + Cdr] ,

so that [
√

3− (d− 1)Cd]r <
√

3 + 2(d− 1), contradicting the hypotheses.
If d = 2, we have |b2 − b1| ≥ 2r − 2 ≥ 2 + r, since r ≥ 4. Let m = 1 in this case.
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Let U1 = φ−1(U0), and set W1 = D(b1, |bm−b1|+1)∩U1 and W2 = U1\W1. Observe that
dist(W1,W2) ≥ Cdr. Indeed, if y1 ∈ W1 and y2 ∈ W2, then y1 ∈ D(bi, 1) and y2 ∈ D(bj, 1)
for some 1 ≤ i ≤ m and some m+ 1 ≤ j ≤ d; therefore

|y2 − y1| ≥ |bj − b1| − |bi − b1| − 2 ≥ |bm+1 − b1| − |bm − b1| − 2 ≥ Cdr.

Since W1 contains m preimages of a and W2 contains the other d − m, it follows that φ
maps W1 m-to-1 onto the connected set U0, and it maps W2 (d−m)-to-1 onto U0.

Let X1 = W1 ∩K, X2 = W2 ∩K, m1 = m, and m2 = d−m. By the previous paragraph,
X1 and X2 satisfy all of the mapping properties claimed in the Lemma. For any integer
i ≥ 0, define gi(z) and hi(z) as in the proof of Lemma 5.1. That is, for i ≥ 1, write

φi(z)− a = gi(z)hi(z),

where gi is a monic polynomial of degree m1d
i−1 with all of its roots in W1, and hi is a

monic polynomial of degree m2d
i−1 with all of its roots in W2. For i = 0, define g0(z) =

h0(z) = z − a. We will now compute the bounds given in the Lemma for X1; the proof for
X2 is similar. Write X = X1 and m = m1.

As in the proof of Lemma 5.1, we may write any integer j ≥ 0 as

j = c0 +m(c1 + c2d+ c3d
2 + · · ·+ cMd

M−1),

with c0 ∈ {0, 1, . . . ,m− 1}, and with ci ∈ {0, 1, . . . , d− 1} for i ≥ 1. Similarly, define

fj(z) =
M∏
i=0

[gi(z)]ci ,

which is clearly monic of degree j. As before, for any x ∈ X, we have |φi(x) − a| ≤ r.
Similarly, the roots of hi, which all lie in W2 (for i ≥ 1), are distance at least Cdr from x.

Thus, |hi(x)| ≥ (Cdr)
(d−m)di−1

, and hence

|gi(x)| ≤ r(Cdr)
−(d−m)di−1

= C−1d (Cdr)
1−(d−m)di−1

for all i ≥ 1. Moreover, since x ∈ U0, we have |g0(x)| ≤ r. We obtain

|fj(x)| ≤ rc0
M∏
i=1

C−cid (Cdr)
ci(1−(d−m)di−1) = C

−(c0+c1+···+cM )
d (Cdr)

e,

where e = e(j,m, d) in the notation of Definition 3.1. The Lemma then follows by the van
der Monde determinant argument of the proof of Lemma 4.1. �

Remark 6.4. Later, in the proof of Theorem 7.1, we will consider the quantity Cdr, rather
than the radius r, at the archimedean primes. It is easy to prove that the lower bound for
r given in Lemma 6.3 is guaranteed to hold provided Cdr ≥ 4 +

√
3. (In fact, 4 +

√
3 is the

value of Cd(
√

3 + 2(d− 1))/(
√

3− (d− 1)Cd) at d = 3.) For d = 2, we also note the more
obvious facts that C2 = 1 and that the corresponding sufficient lower bound for C2r is 4.

Remark 6.5. The bounds in Lemma 6.1 and Lemma 6.3 are not sharp. Besides the
fact that most of the comments from Remarks 4.3 and 5.2 apply here, our geometric
arguments could also be improved. For example, in the proof of Lemma 6.1, if we considered
D(c, s) ∩D(y0, t) instead of D(c, s) ∩D(y0, |y0 − c|), where t =

√
|y0 − c|2 + s2, we could

show that some bi satisfies |y0 − bi| ≥ t. Related arguments could show that two or more
points bi, bj must make the product |y0 − bi| · |y0 − bj| larger than we proved. Similarly, it
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should be possible to increase the
√

3 factor to something closer to 2 by considering the
geometric arrangement of the {bi} more delicately.

7. The Global Bound

At last, we are prepared to state and prove a precise version of the Main Theorem.

Theorem 7.1. Let K be a global field, and let φ ∈ K[z] be a polynomial of degree d ≥ 2.
Let s∞ ≥ 0 be the number of archimedean primes of K, and let s ≥ s∞ be the number of
bad (i.e., not potentially good) primes of φ in MK, including all archimedean primes.

If K is a function field, i.e., if s∞ = 0, let q be the size of the smallest residue field of a
prime v ∈MK. If K is a number field, let D = [K :Q], and let

σ =

7 if d = 2,

2 · 33(d−1)(d−2)

(d− 1)(d− 2)
if d ≥ 3.

Set

t =


s if s∞ = 0,

s− s∞ if s∞ > 0 and s ≤ σD,

s+
D log d

4 log 2
if s∞ > 0 and s > σD,

and

β =


9 if s∞ > 0, s ≤ σD, and d = 2,

max{11, 2d} if s∞ > 0, s ≤ σD, and d ≥ 3,

1 otherwise.

Then φ has no more than M + 1 K-rational preperiodic points in P1(K), where

M =


q if s = s∞ = 0,

βD if s = s∞ > 0,

βD(d2 − 2d+ 2)(t logd t+ 3t) if 0 < t < d,

βD(d2 − 2d+ 2)(t logd t+ t logd logd t+ 3t) otherwise.

Proof. For each prime v ∈ MK , let nv ≥ 1 be the exponent so that the product formula
(1) holds for all x ∈ K×. Let S be the (finite) set of primes of K of bad reduction of φ,
including all the archimedean primes; that is, #S = s. Let ad ∈ K be the lead coefficient
of φ. For each prime v ∈ MK , let Kv ⊆ Cv denote the filled Julia set of φ in Cv, let r′v be

the radius of the smallest disk in Cv containing Kv, and let rv = |ad|1/(d−1)v r′v.
For each non-archimedean prime v, let Rv = rnv

v . For each archimedean prime v, let
Rv = (Cdrv)

nv , where Cd = d−(d−2)/(d−1) ≤ 1, as in the statement of Lemma 6.3. We
consider four cases, some of which overlap with others.

Case 0. The simplest case is that K is a function field and S = ∅; that is, there are
no archimedean primes, and all primes have potentially good reduction. Let w ∈ MK be
a prime whose residue field has only q elements, and suppose that there are q + 1 distinct
K-rational preperiodic points {x1, . . . , xq+1} besides the point at ∞.
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By Lemma 2.5.c, we have |xi − xj|v ≤ |ad|−1/(d−1)v for every v ∈ MK and every i, j ∈
{1, . . . , n}. Moreover, by the pigeonhole principle, there must be some distinct i, j ∈
{1, . . . , n} such that |xi − xj|w < |ad|−1/(d−1)w . Hence,

1 =
∏

v∈MK

|xi − xj|nv

v <
∏

v∈MK

[
|ad|−1/(d−1)v

]nv
= 1,

which is a contradiction. Thus, there are at most q finite K-rational preperiodic points.
Case 1. Choose w ∈ MK such that Rw ≥ Rv for all v ∈ MK . (Such w exists because

Rv = 1 for all but finitely many v ∈MK .) In this main case, we suppose that:

• Rw > 1.
• If K is a number field, then Rw ≥ 16 and s− s∞ ≥ 1.
• If w is archimedean, then the lower bounds of Lemma 6.3 hold for rw.

In particular, we may choose integers m1,m2 and sets X1, X2 ⊆ Kw for φ according to
Lemma 5.1 (if w is non-archimedean) or Lemma 6.3 (if w is archimedean).

For each index k = 1, 2, set

Ak =
d−mk

mk(d− 1)
, Bk = 1− logdmk, and Nk = M(Ak, Bk, t),

where M(·, ·, ·) is as in Lemma 3.5, and where t is as in the statement of the Theorem. We
claim that there are fewer than Nk K-rational preperiodic points in Xk.

To prove the claim, fix k = 1, 2, and let m = mk, A = Ak, B = Bk, and N = Nk.
Suppose there are N distinct K-rational preperiodic points x1, . . . , xN in Xk. Then by the
product formula applied to both

∏
i 6=j(xi − xj) and ad,

1 =
∏

v∈MK

∣∣∣∣∣∏
i 6=j

(xi − xj)

∣∣∣∣∣
nv

v

=
∏

v∈MK

[
|ad|N(N−1)/(d−1)

v

∏
i 6=j

|xi − xj|v

]nv

≤
∏
v∈S

[
|ad|N(N−1)/(d−1)

v

∏
i 6=j

|xi − xj|v

]nv

,(7)

where the inequality is because |x− y|v ≤ |ad|−1/(d−1)v for all v ∈MK \ S and x, y ∈ Kv, by
Lemma 2.5.c, and because x1, . . . , xN ∈ Kv for every v ∈MK .

If w is non-archimedean, then by Lemma 4.1 and Lemma 5.1, (7) becomes

1 ≤ NDNrnwE(N,m,d)
w

∏
v∈S\{w}

rnvE(N,d)
v = NDNC

−DE(N,d)
d RE(N,m,d)

w

∏
v∈S\{w}

RE(N,d)
v ,

where we set D = 0 if K is a function field. (The appearance of D in the exponent comes
from equation (2).) Because Rw ≥ Rv and E(N, d) ≥ 0, we can replace each Rv by Rw;
and because Rw, C

−1
d ≥ 1, we can apply Lemma 3.4.a–b to obtain

(8) 1 ≤ NDNC
−(d−1)DN logd N
d R(d−1)N [s logd N−AN+B]

w .
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Similarly, if w is archimedean, then by Lemma 4.1 and Lemma 6.3, (7) becomes

1 ≤ NDNC
−nwF (N,M,d)
d (Cdrw)nwE(N,m,d)

∏
v∈S\{w}

rnvE(N,d)
v

= NDNC
−(D−nw)E(N,d)−nwF (N,m,d)
d RE(N,m,d)

w

∏
v∈S\{w}

RE(N,d)
v .

Replacing each Rv by Rw as before, and applying Lemma 3.4a–c, we obtain exactly in-
equality (8) once more.

Meanwhile, we compute

(9) NDNC
−(d−1)DN logd N
d = dDN logd Nd(d−2)(DN logd N) = d(d−1)DN logd N .

If K is a number field, our assumption that Rw ≥ 16 means that d ≤ R
1/ logd 16
w . Combining

(8) and (9), then, we obtain

(10) 1 ≤ R(d−1)N [t logd N−AN+B]
w ,

where t = s + D log d/(4 log 2), as in the statement of the Theorem. The same inequality
follows for function fields with t = s, since D = 0 in that case. By our definitions of A, B,
and t, the hypotheses of Lemma 3.5 hold. Thus, by that Lemma and our choice of N , we
have t logdN −AN +B < 0, so that 1 < 1, which is a contradiction, proving the claim that
there are fewer than Nk K-rational preperiodic points in Xk. (However, since Nk need not
be an integer, we cannot claim that there are at most Nk − 1 such points.)

The total number of finite K-rational preperiodic points is the number in X1 plus the
number in X2. That is, there are fewer than N1 +N2 such points. That upper bound is

(11) N1 +N2 = M(A1, B1, t) +M(A2, B2, t).

From the definition of M(A,B, t) in Lemma 3.5, it is easy to check that, as m1 varies from
1 to d−1, the largest value of N1+N2 in equation (11) is attained at m1 = 1 and m2 = d−1
(or vice versa). In that case, the bound is

N1 +N2 = (d2 − 2d+ 2) (t logd t+ t logd(max{1, logd t}) + 3t) .

Adding 1 for the point at ∞, we obtain the bound stated in the Theorem, with β = 1.
Case 2. Next, suppose that K is a number field and d = 2. Write S∞ for the set of

archimedean primes of MK , and let s∞ = #S∞. We will remove the archimedean primes
from the picture by covering the filled Julia set at each such prime v ∈ S∞ by at most 9nv

disks of diameter less than |ad|−1v . To simplify notation, let K′v = adKv; we wish to cover
K′v by disks of diameter less than 1.

For any real prime v ∈ S∞, the set K′v is contained either in a single interval of length 6
or in two intervals of length less than 2, by Lemma 6.1 and Remark 6.2. (In fact, the bound
of 6 could be reduced to 4, but we will not need that stronger bound here.) In particular,
K′v is contained in a union of seven or fewer intervals of length strictly less than 1.

For a complex prime v ∈ S∞, the same Lemma implies that K′v is contained either in a
single disk of radius 3 or in two disks of radius less than 1. Each disk of radius 1 can easily
be covered by nine disks of diameter slightly less than 1. Similarly, the disk of radius 3 can
be covered by a square of side length 6. That square can then be divided into 81 squares
of side length 2/3, each of which fits inside a disk of diameter less than 1.
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Scaling back by |ad|−1v , then, we have at each archimedean prime v ∈ S∞ at most 9nv

disks of diameter less than |ad|−1v which together cover Kv, as promised. In total, then, we
have at most 9D choices of one disk for each archimedean prime.

For any such choice D = {Dv : v ∈ S∞} of one disk of diameter less than |ad|−1v for each
archimedean prime v, let PD denote the set of K-rational preperiodic points x for which
x ∈ Dv for every v ∈ S∞. We will bound the size of PD.

If S = S∞, then each set PD can contain at most one point. Indeed, if there were distinct
points x, y ∈ PD, then

1 =
∏

v∈MK

|x− y|nv
v <

∏
v∈MK

[
|ad|−1v

]nv
= 1,

by Lemma 2.5.c, with the strict inequality coming from the fact that the diameter at each
archimedean prime is strictly less than |ad|−1v . Since there are 9D choices of D, there are at
most 9D finite K-rational preperiodic points.

On the other hand, if S ) S∞, then choose w ∈ MK \ S∞ such that Rw ≥ Rv for all
v ∈MK \ S∞. By Lemma 2.5.c, rw > 1, so that we may apply Lemma 5.1 at w.

Now fix D and follow the argument of Case 1, but restricted to {xi} ⊆ PD. At each
archimedean prime v ∈ S∞ we have |xi − xj|v ≤ |ad|−1v . Therefore, by Lemmas 4.1, 5.1,
and 3.4.a–b, inequality (7) becomes

1 ≤ R(d−1)N [t logd N−AN+B]
w ,

where t = s− s∞. Following the rest of the argument of Case 1 (from inequality (10) on),
and multiplying by 9D (the number of choices D), we obtain the desired bounds.

Case 3. If K is a number field and d ≥ 3, we proceed roughly as in Case 2. Again, write
S∞ for the set of archimedean primes of MK , let s∞ = #S∞, and let K′v = αKv, where
αd−1 = ad. This time, we will cover K′v by at most βnv disks of diameter less than 1, where
β = max{11, 2d}.

For a real prime v ∈ S∞, Lemma 6.1 and Remark 6.2 imply that K′v is contained either
in a single interval of length 4 + 2

√
3 or in d intervals of length less than 2. In particular,

K′v is contained in a union of max{8, 2d} ≤ β or fewer intervals of length less than 1.
For a complex prime v ∈ S∞, the same Lemma implies that Kv is contained either in a

single disk of radius 2+
√

3 or in d disks of radius less than 1. As before, each disk of radius
1 can be covered by nine disks of diameter less than 1. Similarly, the disk of radius 2 +

√
3

can be covered by a square of side length 4 + 2
√

3. That square can be divided into 121
squares of side length (4 + 2

√
3)/11, each of which fits inside a disk of diameter less than

1. (In fact, using a hexagonal tiling, one could cover the big disk by 84 disks of diameter
less than 1, but the messy proof gives only a minor improvement over 121.) Thus, K′v can
be covered by a union of max{121, 9d} ≤ β2 disks of diameter less than 1.

The rest of Case 3 then follows Case 2, with βD in place of 9D. This completes our
analysis of the four cases.

Final step. If K is a function field, we are done; indeed, by Lemma 2.5.c, Cases 0 and 1
cover all the possibilities.

If K is a number field, we will now show that for s > σD, we are automatically in Case 1.
Because nv ≤ 2 for an archimedean prime v, and by Remark 6.4, we need only show there
is some w ∈MK such that Rw ≥ 42 if d = 2, or such that Rw ≥ (4 +

√
3)2 if d ≥ 3.
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From basic algebraic number theory, there are at most D primes of K above any given
prime of Q. Given an integer m ≥ 1, let pm denote the mth prime in Q. (That is, p1 = 2,
p2 = 3, p3 = 5, and so on.) Thus, if s− s∞ > D(m− 1), there must be some w ∈ S \ S∞
lying above a prime p ≥ pm of Q. Since D ≥ s∞, we get such a w provided s > mD.

Meanwhile, by Lemma 2.8, given w ∈ S \ S∞ lying over a prime p of Q, we have

Rw ≥ |πw|−nw
w ≥ p if d = 2,

or
R(d−1)(d−2)

w ≥ |πw|−nw
w ≥ p if d ≥ 3,

where πw is a uniformizer at w. (The Lemma applies because if Kw∩K = ∅, then there are
no finite K-rational preperiodic points at all, and the conclusion of the Theorem is trivial.)
For d = 2, then, the condition Rw ≥ 16 is guaranteed provided s ≥ 7D + 1, since 17 is the
seventh prime of Q. Thus, s > 7D = σD suffices for d = 2.

For d ≥ 3, the elementary estimate in Theorem 4.7 of [2] says that pm > (1/6)m logm for
any integer m ≥ 1. It is easy to check that m = bσc satisfies m logm ≥ 6(4+

√
3)2(d−1)(d−2),

where σ = 2 · 33(d−1)(d−2)/[(d − 1)(d − 2)] as in the statement of the Theorem. (The 33
appears because it is the smallest integer larger than (4 +

√
3)2.) Thus, s > σD implies

Rw ≥ (4 +
√

3)2, once again forcing Case 1. �

Remark 7.2. If, for a given polynomial φ, we know that we are in Case 1 (say, by inspection
of the filled Julia set at one prime), then we can set β = 1 in the statement of the Theorem,
even if s ≤ σD. In particular, for a fixed function φ, the conditions of Case 1 are preserved
if one passes to a finite extension of K. Thus, one would not have to worry about the
growth of s relative to σD as one traveled up a tower of number fields, even though one
cannot expect s to increase as fast as σD in general.

Remark 7.3. Our covering methods in Cases 2 and 3 are rather crude, and it should be
possible to cover Kv ⊆ C more efficiently. For example, instead of disks of diameter 1, one
could use larger sets Y for which

∏
1≤i,j≤L |yi − yj|v ≤ 1 for some fixed small integer L.

Such a covering should improve the coefficient βD in the final bound.
Even without any extra work, the coefficient can be reduced in special cases. For example,

if K is a totally real number field, then the cutoff σ would be much smaller, since we would
only need Rw ≥ 4 (if d = 2), or Rw ≥ 4 +

√
3 (if d ≥ 3), rather than 42 or (4 +

√
3)2.

Moreover, if K is totally real and d = 2, then each archimedean Kv ∩ R is contained in a
union of four intervals of length 1. (See, for example, Lemma 6.4 and Proposition 6.6 of
[9].) Thus, the coefficient βD = 9D could be replaced by 4D, with one exception.

The one exception is if all non-archimedean primes have good reduction and the archi-
medean filled Julia set is an interval of length 4. This occurs for the Chebyshev polynomial
φ(z) = z2 − 2, which has filled Julia set [−2, 2]. In this special case, after removing the
points∞ and 2, the rest of the preperiodic points can be covered by four half-open intervals
of length 1 at each archimedean prime. Since there are no non-archimedean bad primes,
we obtain a bound of 2 + 4D for the total number of preperiodic points in P1(K).

Remark 7.4. Another approach to finding a cutoff σ which forces Case 1 would be to
consider the set T ⊆ S consisting of non-archimedean bad primes v at which there are

actually K-rational preperiodic points x, y for which |x − y|v > |ad|−1/(d−1)v . For such
primes, the exponent of −1/[(d−1)(d−2)] in Lemma 2.8 could be improved to −1/(d−1).
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Unfortunately, there may not be very many such primes. As a result, although the exponent
of (d− 1)(d− 2) in the definition of σ could be improved to (d− 1), it would come at the
expense of introducing a extra factor like βD into the formula for σ.

Remark 7.5. For large degrees d, one can obtain slightly smaller bounds by using more
than one big bad prime w. There is, of course, a trade-off. While using ` ≥ 2 big primes
w ultimately increases the coefficient A of −N in the exponent of (8), it also increases the
number of pieces {Xk} from 2 to 2`. It appears that the optimal number of such primes to
use is ` ≈ 2 log2(d− 1). The improved bound for the number of rational preperiodic points
would be roughly the old bound divided by 2 log2(d − 1), for large d. However, the proof
would be vastly more complicated, especially in dealing with the archimedean primes, and
it would give only a slight improvement in the bound.

We close by presenting a slight strengthening of Theorem 7.1 in the simplest case.

Example 7.6. Let K = Q (so that D = s∞ = 1, and nv = 1 for all v ∈ MQ) and
d = 2. That is, we wish to bound the number of rational preperiodic points of a quadratic
polynomial φ ∈ Q[z]. It is of course well known that any such polynomial is conjugate over
Q to one of the form φc(z) = z2 + c, with c ∈ Q.

Let us suppose that φc has at least one preperiodic point in Q. This supposition implies
that c = j/m2 for some relatively prime integers j,m ∈ Z, and that −∞ < c ≤ 1/4;
see, for example, Proposition 6.7 of [9]. (One can also easily establish that j must satisfy
one of approximately 2s congruences modulo m, but we do not need that here.) For non-
archimedean primes v of Z, we have Rv = |m|−1v if v is odd, and R2 = max{|m/2|−12 , 1}.
(Note that if 4 - m, then φc has good reduction at v = 2, after a change of coordinates.)
In addition, for c < 0, we have R∞ = (1 +

√
1− 4c)/2.

By Remark 7.3, the βD coefficient becomes 1 if there is some prime v with Rv ≥ 4. Still
assuming that there is at least one preperiodic point in Q, Lemma 2.8 says that such a
prime must exist unless the only bad primes are ∞, 2, and 3, and R2, R3, R∞ < 4. By our
characterization of Rv above, this means that the denominator m is a divisor of 12, and
that −12 < c ≤ 1/4. There are only finitely many rational numbers of the form c = j/144
between −12 and 1/4, and a simple computer search shows none of the corresponding
polynomials φc has more than eight preperiodic points in Q. (For five such values of
c, namely −21/16, −29/16, −91/36, −133/144, and −1333/144, there are exactly eight
preperiodic points in Q. Incidentally, there are infinitely many values c ∈ Q for which φc

has at least eight preperiodic point in Q, by Theorem 2 of [28].)
For all other c, we are essentially in Case 1, except that we can only assume Rw ≥ 4,

rather than Rw ≥ 16. The only effect this has on the proof of Case 1 is to change the
value of t in inequality (10) to t = s + D log d/(2 log 2) = s + 1/2. If s = 1, then only the
archimedean prime is bad, and in light of Remark 7.3, there are at most five preperiodic
points in Q; in fact, there are at most four for s = 1 and c 6= −2. The only remaining
possibility is that s ≥ 2, in which case the number of preperiodic points in Q is at most

(2s+ 1) [log2(2s+ 1) + log2(log2(2s+ 1)− 1) + 2] .

References

[1] Y. Amice, Les Nombres p-adiques, Presses Universitaires de France, 1975.
[2] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.



PREPERIODIC POINTS 27

[3] M. Baker and L.-C. Hsia, Canonical heights, transfinite diameters, and polynomial dynamics, J. Reine
Angew. Math., to appear.

[4] A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.
[5] R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001),

175–195.
[6] R. Benedetto, Components and periodic points in non-archimedean dynamics, Proc. London Math.

Soc. (3) 84 (2002), 231–256.
[7] R. Benedetto, Non-archimedean holomorphic maps and the Ahlfors Islands Theorem, Amer. J. Math.,

125 (2003), 581–622.
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