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Proof of the Subgroup Theorem

Definition. Let (G, ∗) be a group, and let H ⊆ G be a subset of the set G. If (H, ∗) itself is a
group, then we say H is a subgroup of G.

In this handout, I’ll write out a proof of the following theorem, which is essentially Theorem 5.1
in Saracino’s book. I’ll also state and prove some slight variants. Here’s the theorem:

Theorem. Let G be a group, and let H ⊆ G be a subset. The following are equivalent:

A. H is a subgroup of G [as defined above]

B. H satisfies all of the following properties:

0. e ∈ H

1. For all h1, h2 ∈ H, we have h1h2 ∈ H.

2. For all h ∈ H, we have h−1 ∈ H

Notes:
i. In the original definition of subgroup above, I really should have said (H, ∗H) is a group,
where ∗H is the function with domain H ×H (rather than domain G×G, which is the domain
of ∗) given by the rule h1 ∗H h2 = h1 ∗h2. That is, technically ∗ and ∗H have different domains,
so they are technically different functions, even if they are given by the same formula.
That said, in the proof below, for any two elements x, y of either G or H, we will simply write
xy for x ∗ y, as there is no danger of a double meaning. (In particular, if x, y ∈ H, then
x ∗H y = x ∗ y by definition of ∗H , so x ∗H y and x ∗ y are both simply equal to xy.)

ii. Condition 1 in part (B) of the theorem above is often stated as “H is closed under ∗”
iii. Condition 2 in part (B) of the theorem above is often stated as “H is closed under inverses”

iv. In the proof below, as usual, any [comments in square brackets] are not actually part of the
proof, but simply my side commentary.

Proof of Theorem. (A ⇒ B): Since (H, ∗H) is a group, there is an element eH ∈ H that is
the identity for the binary operation ∗H on H.
We claim that eH = e, i.e., that the identity of H is the same as the identity of G.
[Warning: We don’t know that yet! At first blush, it’s conceivable that different rules apply
to G and H, and so maybe somehow these two groups have different identity elements! So we
actually have something to prove in this claim.]
In particular, then, eHeH = eH , since eH is the identity in the group H.
[We wrote down the above equality thinking in terms of working inside the group H, but of
course it is also true viewing it as an equality inside the larger group G.]
Recall from an earlier result from class that for any x, g ∈ G, if gx = g, then x = e. Thus, with
g = x = eH ∈ G in the above equation, it follows that eH = e.
In particular, e = eH ∈ H, proving statement (0) of B.

For statement (1): Given h1, h2 ∈ H, then because ∗H is a binary operation on H (since (H, ∗H)
is a group), it follows by definition of binary operation that h1h2 ∈ H, proving statement (1)
of B.

For statement (2): Given h ∈ H, let h̃ ∈ H be the inverse of h in H.



[Again, similar to what happened with e versus eH , it’s conceivable that the inverse h̃ in H is
different from the inverse h−1 in the bigger group G.]
So hh̃ = eH = e, where the second equality is by the claim earlier in this proof. Viewing this
equation as an equation involving elements of G rather than H, then by another proposition
from class (which is also Theorem 3.5 in the book), we have h̃ = h−1.
In particular, h−1 = h̃ ∈ H, proving statement (2) of B. QED (A ⇒ B)

(B ⇒ A): We check the four conditions for (H, ∗H) to be a group:

Binary Operation: Given h1, h2 ∈ H, we have h1h2 ∈ H by statement (1) of B, as desired.

Associative: Given a, b, c ∈ H, then a, b, c ∈ G, so (ab)c = a(bc), as desired.

Identity: By statement (0) of B, we have e ∈ H. We claim that this element of H works as
the identity of H. Indeed, for any h ∈ H, we have he = eh = h, as desired.

Inverses: Given h ∈ H, by statement (2) of B we have h−1 ∈ H. We claim that this element
of H is the inverse of h in H. Indeed, we have h−1h = hh−1 = e, as desired. QED Theorem

Variant #1: In the Theorem, we can replace statement (0) of B [that e ∈ H] by the statement:
0’. H is nonempty

(This is still in combination with statements (1) and (2), of course.)

Variant #2: In both the Theorem and in Variant #1, we can replace the two statements (1)
and (2) of B by the single statement:

1’. For all h1, h2 ∈ H, we have h1h
−1
2 ∈ H.

(This is still in combination with either statement (0) or statement (0’), of course.)

Proof of Variant #1. Clearly statement (0) implies statement (0’).

Conversely, given all three of statements (0’), (1), and (2), we have that there exists some
h ∈ H, since H ̸= ∅ by (0’).
Therefore, by statement (2), we have h−1 ∈ H.
Therefore, by statement (1), since h, h−1 ∈ H, we have e = hh−1 ∈ H, proving statement (0)
as desired. QED Variant #1

Proof of Variant #2. Assuming statements (1) and (2), we will show (1’). Given any
h1, h2 ∈ H, we have h−1

2 ∈ H by statement (2).
Therefore, by statement (1), we have h1h

−1
2 ∈ H, as desired.

Conversely, given both statements (0) and (1’), given any h ∈ H, we have e ∈ H by statement
(0), and hence by statement (1’), we have h−1 = eh−1 ∈ H, proving statement (2).
To prove statement (1), given h1, h2 ∈ H, since we now know that statement (2) holds, we have
h−1
2 ∈ H. Therefore, by statement (1’) applied to h1 and h−1

2 , we have h1h2 = h1(h
−1
2 )−1 ∈ H,

as desired.

Finally, we also need to show, assuming statements (0’) and (1’), that statement (0) holds.
[And therefore statements (0) and (1’) hold, so by what we just showed, statements (1) and (2)
must hold as well.]
To see this, by statement (0’), there exists some h ∈ H. Therefore, by statement (1’), we have
e = hh−1 ∈ H, proving statement (0). QED Variant #2
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