
Math 350, Sections 01,03, Fall 2021 Professor Rob Benedetto

Solutions to Extra Practice Problems for Midterm Exam 2

• Find the order and the parity (even or odd) of each of the following elements of S8:
(a): σ = (1, 4, 3)(3, 5)(2, 7, 5)(1, 6, 2, 4, 7)
(b): σ = (3, 6, 4)(1, 5, 2, 4)(1, 6, 5, 3, 2)
(c): σ, τ , and στ , where σ = (1, 2, 3)(4, 5, 6) and τ = (2, 7, 8, 5)(3, 4)

Solutions. (a): Simplifying, σ = (1, 6, 7, 4)(2, 3, 5), a disjoint 4-cycle and 3-cycle.

Thus, o(σ) = lcm(4, 3) = 12 The 4-cycle is odd, and the 3-cycle is even, so adding gives σ is odd

(b): Simplifying, σ = (1, 4)(2, 5, 6), a disjoint 2-cycle and 3-cycle. Thus, o(σ) = lcm(2, 3) = 6

The 2-cycle is odd, and the 3-cycle is even, so adding gives σ is odd

(c): σ is two disjoint 3-cycles, so o(σ) = lcm(3, 3) = 3 and since each cycle is even, σ is even

τ is a disjoint 4-cycle and 2-cycle, so o(τ) = lcm(4, 2) = 4 and since each cycle is odd, τ is even

Simplifying, στ = (1, 2, 7, 8, 6, 4)(3, 5), a disjoint 6-cycle and 2-cycle Thus, o(στ) = lcm(6, 2) = 6

Both cycles are odd, so στ is even

[Alternative for last step of (c): Since we already saw that σ and τ are both even, we have στ is
even + even = even.]

• In each part (a), (b), (c) of the previous problem, and for each k = 1, 2, 3, 4, 5, 6, find the parity (even
or odd) of gkσ and fkσ, where fk = (7, k) and gk = (7, k, 8).

Solutions. Every fk is a 2-cycle and hence is odd; every gk is a 3-cycle and hence even. Thus:

(a): σfk is odd + odd = even and σgk is odd + even = odd for every k.

(b): σfk is odd + odd = even and σgk is odd + even = odd for every k.

(a): σfk is even + odd = odd and σgk is even + even = even for every k.

Saracino #8.24: Let G be a group, and let H,K ⊆ G be subgroups. Let

HK = {hk |h ∈ H, k ∈ K}.
For G = S3, find subgroups H,K ⊆ S3 such that HK is not a subgroup of S3.

Solution. Let H = 〈(1, 2)〉 = {e, (1, 2)} and K = 〈(1, 3)〉 = {e, (1, 3)}. Then

HK = {ee, (1, 2)e, e(1, 3), (1, 2)(1, 3)} = {e, (1, 2), (1, 3), (1, 3, 2)},
which cannot be a subgroup of S3 because it has 4 elements, and 4 - 6, so S3, which has |S3| = 6, cannot
have a subgroup of order 4, by Lagrange. QED

[Alternatively, you can check that HK is not closed under products, as (1, 3)(1, 2) = (1, 2, 3) 6∈ HK. It’s
also not closed under inverses, since (1, 3, 2)−1 = (1, 2, 3) 6∈ HK.]

Saracino #8.25: Let n ≥ 3. Prove that if n is odd, then Z(Dn) = {e}, and if n is even, then |Z(Dn)| = 2.

Proof. Odd case: For any i = 1, . . . , n − 1, observe that n - i, and therefore, since n is odd, we also
have n - 2i. Therefore, since o(f) = n, we have f2i 6= e, and hence f i 6= f−i. Thus,

gf i = f−ig 6= f ig.

That is, g and f i do not commute with one another, so f i 6∈ Z(Dn).
In addition, for any j = 0, . . . , n− 1, we have

(f jg)(f) = f jf−1g = f j−1g 6= f j+1g = f(f jg),

where the inequality is because f2 6= e, since o(f) = n ≥ 3. Thus, f jg 6∈ Z(Dn).



We have shown that none of the non-identity elements of Dn lie in the center, but e certainly does, since
the identity commutes with everything. Thus, Z(Dn) = {e} QED Odd case

Even case: Write n = 2m. For any i = 1, . . . ,m− 1, we have n - 2i, since 2 ≤ 2i < n.
For any i = m+ 1, . . . , n− 1, we also have n - 2i, since n+ 2 ≤ 2i < 2n.
That is, for any i = 1, . . . , n− 1 with i 6= m, we have n - 2i. Therefore, for any such i, we have

gf i = f−ig 6= f ig.

That is, g and f i do not commute with one another, so f i 6∈ Z(Dn).
In addition, for any j = 0, . . . , n− 1, we have

(f jg)(f) = f jf−1g = f j−1g 6= f j+1g = f(f jg),

where the inequality is because f2 6= e, since o(f) = n ≥ 3. Thus, f jg 6∈ Z(Dn).
Having eliminated all elements of Dn besides fm and e, we have Z(Dn) ⊆ {e, fm}. We claim the reverse
inclusion also holds, in which case we will be done. Clearly e lies in the center, so it remains to show
fm ∈ Z(Dn).
For any i ∈ Z, we have f ifm = f i+m = fm+i = fmf i, and also

(f ig)fm = f if−mg = f i−mg = f i+mg = fm(f ig),

where the third equality is because e = fn = f2m. Thus, we have shown fm commutes with every element
of Dn, so that fm ∈ Z(Dn), as desired. That is, Z(Dn) = {e, fm} has two elements. QED Even case

Saracino #9.7: Find the right cosets of H = {(0, 0), (1, 0), (2, 0)} in C3 × C2.

Solution. The full group G = C3 × C2 has 3 · 2 = 6 elements, and this subgroup H = 〈(1, 0)〉 has 3
elements.
We have H + (0, 0) = H, and we compute H + (0, 1) = {(0, 1), (1, 1), (2, 1)}, giving the other three
elements of G. Thus, the (two) right cosets of H are

H + (0, 0) = {(0, 0), (1, 0), (2, 0)} and H + (0, 1) = {(0, 1), (1, 1), (2, 1)}

Saracino #9.13: Let G be a group, and let A,B ⊆ G be subgroups. Define a relation R on G by

xR y iff ∃a ∈ A and b ∈ B such that x = ayb

Prove that R is an equivalence relation on G.

Proof. (Refl): Given x ∈ G, we have e ∈ A and e ∈ B, so because x = exe, we have xRx.

(Symm): Given x, y ∈ G such that xR y, we have x = ayb for some a ∈ A and b ∈ B. But then a−1 ∈ A
and b−1 ∈ B, and we have y = a−1xb−1. Thus, y Rx.

(Trans): Given x, y, z ∈ G such that xR y and y R z, we have x = ayb and y = a′zb′ for some a, a′ ∈ A
and b, b′ ∈ B.
Then aa′ ∈ A and b′b ∈ B, so x = ayb = aa′zb′b, so that xR z. QED

Saracino #9.14: Let G be a group. Define a relation R on G by: aR b means ab = ba. Decide for which
groups R is an equivalence relation on G.

Answer/Proof. We claim that R is an equivalence relation on G if and only if G is abelian.

(⇒): Given x, y ∈ G, observe that xR e because xe = x = ex, and that eR y because ey = y = ye.
Because R is transitive, it follows that xR y, which means xy = yx. QED (⇒)

(⇐): (Refl): Given g ∈ G, we have gg = gg, so that g R g.

(Symm): Given x, y ∈ G such that xR y, we have xy = yx. Therefore, yx = xy, i.e., y Rx.

(Trans): Given x, y, z ∈ G such that xR y and y R z, then [ignoring those assumptions] we have xz = zx
since G is abelian, and hence xR z. QED

[Note: In this case, then entire set G is a single equivalence class; everything is equivalent to everything
else. So this relation R is either not an equivalence relation (when G is not abelian), or else a very boring
equivalence relation (where everything is related to everything else, when G is abelian).]



Saracino #10.2(a): Find [G : H] where G = C48 and H = 〈32〉.
Solution. By a couple of old results, |H| = o(32) = 48/(32, 48) = 48/16 = 3. Therefore, by Lagrange,

[G : H] = |G|/|H| = 48/3 = 16

Saracino #10.3(a): Find [G : H] for G = C6 × C4 and H = {0} × C4.

Solution. We have |G| = 6 · 4 = 24 and |H| = 1 · 4 = 4. Therefore, by Lagrange,

[G : H] = |G|/|H| = 24/4 = 6

Saracino #10.7: Let p and q be prime numbers, and let G be a group of order pq. Prove that every
proper subgroup of G is cyclic.

Proof. Given H ⊆ G a proper subgroup, let m = |H|. Then by Lagrange, we have m|pq, and hence m
is one of 1, p, q, pq.
If m = pq, then |H| = |G|, so since H ⊆ G and G is finite, we have H = G, contradicting our assumption.
Thus, m is one of 1, p, q.
If m = 1, then H = {e} is trivial and hence cyclic (generated by e).
If m = p or m = q, then |H| is prime, so by a corollary to Lagrange, H is cyclic. QED

Saracino #10.9: Let G be a group, let H,K ⊆ G be subgroups, and suppose that |H| = 39 and |K| = 65.
Prove that H ∩K is cyclic.

Proof. We know from an old homework that H ∩K is a subgroup of G and hence, being contained in
H and in K, is also a subgroup of both H and K.
Let m = |H∩K|. By Lagrange applied to H∩K ⊆ H, we have m|39. By Lagrange applied to H∩K ⊆ K,
we have m|65. Thus, m|(39, 65), i.e., m|13. So either m = 1 or m = 13.
If m = 1, then H ∩K = {e} = 〈e〉 is cyclic.
If m = 13, then because 13 is prime, we have that H ∩K is cyclic by a corollary to Lagrange. QED

Saracino #10.24: Let G be a group, and suppose there is g ∈ G such that Z(g) = Z(G). Prove that G is
abelian.

Proof. We have g ∈ Z(g) since g commutes with itself. By hypothesis, then, we have g ∈ Z(G).
We claim that Z(G) = G. The forward inclusion is obvious. For the reverse inclusion, given x ∈ G, we
have xg = gx, because g ∈ Z(G). Thus, we have x ∈ Z(g), by definition of Z(g). By the hypothesis
again, then, we have x ∈ Z(G), proving out claim.
Since Z(G) = G, every element of G commutes with every element of G, i.e., G is abelian. QED

Saracino #10.26: Find the conjugacy classes in D4, and write down the class equation for D4.

Solution. We know that Z(D4) = {e, f2}, so each of those two elements is in its own conjugacy class.
Consider f next. Conjugating by any element f i gives f iff−i = f , and conjugating by any element f ig
(which is its own inverse) gives

(f ig)f(f ig) = f i(gf i+1)g = f if−(i+1)gg = f3.

Thus, the conjugacy class of f is {f, f3}.
Next, consider g. Conjugating by f i gives

f igf−i = f if ig = f2ig

which is either g if i is even, or f2g if i is odd. Conjugating by f ig gives

(f ig)g(f ig) = f ief ig = f2ig,

the same result. Thus, the conjugacy class of g is {g, f2g}.
Finally, consider fg. Conjugating by f i gives

f i(fg)f−i = f i+1f ig = f2i+1g

which is either fg if i is even, or f3g if i is odd. Conjugating by f ig gives



(f ig)fg(f ig) = f i(f−1g)g(f i)g = f i−1ef ig = f2i−1g,

which is either fg if i is odd, or f3g if i is even. Thus, the conjugacy class of fg is {fg, f3g}.
So there are five conjugacy classes: three with two elements ([f ], [g], and [fg]) and two with one element
([e] and [f2]); but we combine the one-element classes in the class equation. Thus, since |D4| = 8, the
class equation here is:

8 = 2 + 2 + 2 + 2

Saracino #10.27: Let G be a finite group. Prove that [G : Z(G)] cannot be a prime number.

Proof. If Z(G) = G, so [G : Z(G)] = 1, which is not prime. Thus, we may assume for the rest of the
proof that Z(G) ( G. In particular, we may pick a ∈ Gr Z(G).
Suppose that [G : Z(G)] is a prime number p. We know that Z(a) is a subgroup of G, and that Z(a)
contains a as well as every element of Z(G). Thus, we have Z(G) ( Z(a) ⊆ G.
Write m = |Z(G)|, so that by Lagrange’s Theorem, we have |G| = |Z(G)|[G : Z(G)] = mp. Let
n = |Z(a)|. Then again by Lagrange, we have m|n with n > m (because Z(G) ( Z(a)), and hence there
is some integer k ≥ 2 such that n = mk.
Lagrange also tells us that n|(mp) (because Z(a) ⊆ G), so that there is some integer ` ≥ 1 with n` = mp.
Thus, mk` = mp, so that k` = p. Since p is prime and k ≥ 2, we must have k = p.
Thus, |Z(a)| = n = mp = |G|, and because G is finite, it follows that Z(a) = G. That is, a commutes
with every element of G. But then a ∈ Z(G), contradicting our choice of a. Therefore, our supposition
that [G : Z(G)] is prime is impossible. QED

Saracino #11.3: Let H C G, and assume that |H| = 2. Prove that H ⊆ Z(G).

Proof. We can write H = {e, a} with a 6= e. Given h ∈ H and x ∈ G, we must show that xh = hx.
If h = e, then xh = xe = x = ex = hx, as desired.
If h = a, then xhx−1 ∈ H because H C G. If xhx−1 = e, then xh = x, so h = e 6= a, a contradiction; so
xhx−1 6= e. But then xhx−1 = a = h, so that xh = hx. QED

Saracino #11.4: Let H C G and K C G. Prove that H ∩K C G.

Proof. We already know H ∩K is a subgroup of G, from some old homework.
Given x ∈ H ∩K and g ∈ G, we have gxg−1 ∈ H since x ∈ H and H C G. We also have gxg−1 ∈ K
since x ∈ K and K C G. Thus, gxg−1 ∈ H ∩K. QED

Saracino #11.7: Let H C G and K C G, and assume that H ∩K = {e}. Prove that for any x ∈ H and
y ∈ K, we have xy = yx.

Proof. Given x ∈ H and y ∈ K, let g = xyx−1y−1. We will show that g ∈ H ∩K.
Indeed, yx−1y−1 ∈ H because x−1 ∈ H and y ∈ G, with H C G. Therefore, g = x(yx−1y−1) ∈ H
because it is a product of two elements of H.
Similarly, xyx−1 ∈ K because y ∈ K and x ∈ G, with K C G. Because y−1 ∈ K, we have that
g = (xyx−1)y−1 is a product of two elements of K and hence lies in K.
Because g ∈ H ∩K, we have g = e, i.e., xyx−1y−1 = e, so that xy = yx. QED

Saracino #11.9: Recall from Exercise 11.8 that for subgroups H,N ⊆ G with N C G, you proved that
the subset NH = {nh |n ∈ N,h ∈ H} is a subgroup of G. Suppose further that H C G. Prove that NH
is also normal in G.

Proof. We already know NH is a subgroup of G. Given nh ∈ NH (i.e., with n ∈ N and h ∈ H), and
given g ∈ G, we have

g(nh)g−1 = (gng−1)(ghg−1) ∈ NH,
because gng−1 ∈ N and ghg−1 ∈ H, because both subgroups are normal in G. QED

Saracino #11.13: Suppose that A C G and B C H. Prove that A×B C G×H.

Proof. Given (a, b) ∈ A×B and (g, h) ∈ G×H, we have



(g, h)(a, b)(g, h)−1 = (gag−1, hbh−1) ∈ A×B,

where the inclusion is because gag−1 ∈ A since A C G, and because hbh−1 ∈ A since B C H. QED

Saracino #11.14(a): Let G = C12 × C12 and H = 〈(2, 2)〉. Find the order of the element H + (5, 8) in
G/H.

Proof. We have H = {(0, 0), (2, 2), (4, 4), (6, 6), (8, 8), (10, 10)}. The order of H + (5, 8) is the smallest
positive integer n such that H + n(5, 8) = H + (0, 0), i.e., such that n(5, 8) ∈ H. We compute:

2(5, 8) = (10, 4), 3(5, 8) = (3, 0), 4(5, 8) = (8, 8) ∈ H.

Thus, o(H + (5, 8)) = 4 in G/H. QED

Saracino #11.14(b): With G and H as in the previous problem, is G/H cyclic?

Answer/Proof. NO, G/H is not cyclic

We have |G| = 12 · 12 and |H| = 6, so by Lagrange, |G/H| = |G|/|H| = 12 · 2 = 24. If G/H were cyclic,
then G/H would have an element of order 24. It suffices to show that no such element exists.
Given an arbitrary H + a ∈ G/H, the element a ∈ G is of the form a = (x, y) with x, y ∈ C12. Thus,
12a = (12x, 12y) = (0, 0) is the identity element of G. Therefore, 12(H + a) = H + (12a) = H + (0, 0) is
the identity element of G/H. Hence, H + a has order at most 12, so o(H + a) 6= 24. QED

Saracino #11.21: Let G be an abelian group, and let H be the subgroup consisting of all elements of G
that have finite order. [Note from RLB: you may take my word for it that H is indeed a subgroup of G.]
Prove that every non-identity element of G/H has infinite order.

Proof. Given an arbitrary element Ha ∈ G/H, i.e., the coset containing some a ∈ G, suppose that Ha
has finite order. It suffices to show that Ha is the identity element of G/H.
By our supposition, there is a positive integer n ≥ 1 such that (Ha)n = He, i.e., Han = He, i.e.,
an = ane−1 ∈ H.
By definition of H, then, the element an has finite order, so there is some m ≥ 1 such that (an)m = e, i.e.,
amn = e. But then a itself has finite order, so that a ∈ H. Therefore, ae−1 = a ∈ H, so that Ha = He
is the identity element of G/H. QED

[Note: You may have noticed that we didn’t seem to use the hypothesis that G is abelian. Well, actually,
that fact is needed to show the part I said you could take my word for, that H itself, the set of elements
of finite order, is a subgroup.]

Saracino #11.23: Let G be a group, and let H be a subgroup of index 2. Prove that for every a ∈ G, we
have a2 ∈ H.

Proof. By a theorem, we have H C G because [G : H] = 2. Thus, G/H is defined and is a group of
order [G : H] = 2.
Given a ∈ G, the coset Ha ∈ G/H has (Ha)2 = He by a corollary to Lagrange because G/H is a group
of order 2 with identity element He. That is, Ha2 = He, which means a2 = a2e−1 ∈ H. QED

Saracino #11.28: Let G be a group and let N C G. Assume that N is cyclic. Prove that every subgroup
of N is normal in G.

Proof. Let a be a generator for N . Let H be a subgroup of N . By an old theorem, we have that H is
also cyclic, and specifically, H = 〈an〉 for some integer n ∈ Z.
Given g ∈ G and h ∈ H, there is an integer m ∈ Z such that h = (an)m, i.e., h = amn. In addition, since
N C G, we have gag−1 ∈ N , so there is some integer k ∈ Z such that gag−1 = ak. Thus,

ghg−1 = gamng−1 =
(
gag−1

)mn
= (ak)mn = akmn = (an)km ∈ H

where the final inclusion is because H is generated by an and km ∈ Z. QED

Saracino #11.29: Suppose that G/Z(G) is cyclic. Prove that G is abelian.



Proof. For ease of notation, write Z = Z(G). By hypothesis, there exists a ∈ G such that Za ∈ G/Z is
a generator for G/Z.
Given x, y ∈ G, consider the cosets Zx and Zy, which are elements of G/Z. Since G/Z = 〈Za〉, there
exist integers m,n ∈ Z such that Zx = (Za)m and Zy = (Za)n. That is, Zx = Zam and Zy = Zan.
Equivalently, x ∈ Zam and y ∈ Zan, meaning that there exist w, z ∈ Z such that x = wam and y = zan.
Hence,

xy = wamzan = zwaman = zwam+n = zwanam = zanwam = yx,

where the first and fifth equalities are because w, z ∈ Z(G) commute with every element of G. QED

Saracino #12.2: Define ϕ : G → G by ϕ(x) = x−1. If G is abelian, prove that ϕ is an automorphism of
G. If G is not abelian, prove that ϕ is not a homomorphism.

Proof. For any group G, we note that ϕ is one-to-one and onto, as follows:

1-1: Given x, y ∈ G with ϕ(x) = ϕ(y), we have x−1 = y−1, so taking inverses of both sides, we get x = y.
QED 1-1

Onto: Given y ∈ G, let x = y−1 ∈ G. Then ϕ(x) = x−1 = y. QED Onto

It remains to check whether ϕ is a homomorphism:

Abelian case. For G abelian, then given x, y ∈ G, we have

ϕ(xy) = (xy)−1 = y−1x−1 = x−1y−1 = ϕ(x)ϕ(y),

proving that ϕ is a homomorphism, and hence (since it is bijective) an isomorphism in this case.

Non-abelian case. For G non-abelian, there exist a, b ∈ G with ab 6= ba. Let x = a−1 and y = b−1.
Then

ϕ(xy) = (xy)−1 = y−1x−1 = ba 6= ba = x−1y−1 = ϕ(x)ϕ(y),

which shows that ϕ is not a homomorphism in this case. QED

Saracino #12.4(e): Determine whether C3 × C3 and C9 are isomorphic.

Answer/Proof. NO, not isomorphic

C9 is cyclic, but by an earlier theorem, C3×C3 is not cyclic, since gcd(3, 3) = 3 6= 1. However, any group
isomorphic to a cyclic group must be cyclic, so C9 cannot be isomorphic to C3 × C3 QED

Saracino #12.4(k): Determine whether D3 × C4 and D4 × C3 are isomorphic.

Answer/Proof. NO, not isomorphic
Let G = D3 × C4 and H = D4 × C3. Let’s find all the elements of order 6 in each.
Consider G. For any x ∈ D3, the order of x is one of 1, 2, 3, so the order of (x, 0) ∈ G is lcm(o(x), 1) =
o(x) 6= 6. Similarly, since 1 and 3 have order 4 in C4, the order of (x, 1) ∈ G is lcm(o(x), 4) is divisible
by 4 and hence does not equal 6. Lastly, the order of (x, 2) ∈ G is lcm(o(x), 2), which is 6 if and only if
o(x) = 3, which happens exactly when x = f or x = f2. Thus, G has exactly two elements of order 6,
namely (f, 2) and (f2, 2).
Consider H. Note that D4 has five elements of order 4, namely the 180◦ rotation f2, and the four flips
f ig for i = 0, 1, 2, 3. In addition, C3 has two elements of order 3, namely 1 and 2. Thus, H has 5 · 2 = 10
elements of order 6, namely each element of the form (x, j) where x ∈ D4 is one of the elements of order
2, and j is 1 or 2.
If the two groups were isomorphic, then there would be an isomorphism ϕ : H → G. Because ϕ is 1-1,
the ten elements of H of order 6 would map to ten different elements of G, and because isomorphisms
preserve order of elements, each of these ten elements of G would have order 6. But G has only two
elements of order 6, a contraction. Thus, the groups are not isomorphic. QED

Saracino #12.7: Suppose A ∼= G and B ∼= H. Prove that A×B ∼= G×H.

Proof. By hypothesis, there are isomorphisms ϕ : A → G and ψ : B → H. Define Φ : A× B → G×H
by Φ(a, b) = (ϕ(a), ψ(b)) ∈ G×H.



Homom: Given (a1, b1), (a2, b2) ∈ A×B, we have

Φ
(
(a1, b1)(a2, b2)

)
= Φ(a1a2, b1b2) =

(
ϕ(a1a2), ψ(b1b2)

)
=

(
ϕ(a1)ϕ(a2), ψ(b1)ψ(b2)

)
=(

ϕ(a1), ψ(b1)
)(
ϕ(a2), ψ(b2)

)
= Φ

(
(a1, b1)

)
Φ
(
(a2, b2)

)
1-1: Given (a1, b1), (a2, b2) ∈ A × B such that Φ

(
(a1, b1)

)
= Φ

(
(a2, b2)

)
, we have

(
ϕ(a1), ψ(b1)

)
=(

ϕ(a2), ψ(b2)
)
.

Thus, ϕ(a1) = ϕ(a2) and ψ(b1) = ψ(b2). Since ϕ and ψ are 1-1, we have a1 = a2 and b1 = b2, so
(a1, b1) = (a2, b2).

Onto: Given (g, h) ∈ G×H, there exist a ∈ A and b ∈ B such that ϕ(a) = g and ψ(b) = h, since ϕ and
ψ are onto. Thus, Φ((a, b)) =

(
ϕ(a), ψ(b)

)
= (g, h). QED

Saracino #12.8: Is C14 isomorphic to a subgroup of C35? Of C56?

Solution. NO, C14 is not isomorphic to a subgroup of C35

If it were, then the subgroup H of C35 would have |H| = |C14| = 14. But |C35| = 35 and 14 - 35, so by
Lagrange’s Theorem, C35 has no subgroup of order 14.

YES, C14 is isomorphic to a subgroup of C56

Since 56 = 14 · 4, note that H = 〈4〉 is a cyclic subgroup of C56, and by an old theorem, its order is
56/(4, 56) = 56/4 = 14. By a recent theorem (Theorem 12.2), since the groups C14 and H are both cyclic
of order 14, they are isomorphic. QED

Saracino #12.14: Let ϕ : G→ H be an isomorphism. Prove that Z(G) ∼= Z(H).

Proof. Define ψ : Z(G)→ Z(H) by ψ(x) = ϕ(x).
Certainly ψ maps Z(G) into H, but we must show it maps in fact into Z(H). To see this, given x ∈ Z(G),
we must show ψ(x) ∈ Z(H). That is, given h ∈ H, we must show hψ(x) = ψ(x)h. Well, since ϕ is onto,
there is some g ∈ G such that h = ϕ(g). Thus,

hψ(x) = ϕ(g)ϕ(x) = ϕ(gx) = ϕ(xg) = ϕ(x)ϕ(g) = ψ(x)h,

as desired, where we have used the various properties and definitions stated above.

Homom: Given x, y ∈ Z(G), then xy ∈ Z(G), and ψ(xy) = ϕ(xy) = ϕ(x)ϕ(y) = ψ(x)ψ(y).

1-1: Given x, y ∈ Z(G) such that ψ(x) = ψ(y), then ϕ(x) = ϕ(y), so x = y because ϕ is 1-1.

Onto: Given w ∈ Z(H), we have w ∈ H, so there is some z ∈ G such that ϕ(z) = w, because ϕ is onto.
We claim that z ∈ Z(G). Indeed, for any g ∈ G,we have

ϕ(gz) = ϕ(g)ϕ(z) = ϕ(g)w = wϕ(g) = ϕ(z)ϕ(g) = ϕ(zg).

Therefore, because ϕ is 1-1, we have gz = zg. Since this holds for all g ∈ G, we have z ∈ Z(G), proving
the claim. Thus, w = ϕ(z) = ψ(z). QED

Saracino #12.20(a): Let G be a finite abelian group, and let n be a positive integer relatively prime to
|G|. Let ϕ : G→ G by ϕ(x) = xn. Show that ϕ is an isomorphism from G to G.

Proof. Let m = |G|. Since (m,n) = 1, there are integers a, b ∈ Z such that am+ bn = 1.

Homom: Given x, y ∈ G, then ϕ(xy) = (xy)n = xnyn = ϕ(x)ϕ(y).

1-1: Given x, y ∈ G such that ϕ(x) = ϕ(y), we have xn = yn. In addition, by Lagrange, we have xm = e
and ym = e. Therefore,

x = xam+bn = (xm)a(xn)b = ea(xn)b = (ym)a(yn)b = yam+bn = y

Onto: We have that ϕ is a one-to-one function from the finite set G to itself. By the pigeonhole principle,
it is also onto. QED


