
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Extra Practice Problems for Midterm Exam 2

• Find the order and the parity (even or odd) of each of the following elements of S8:
(a): σ = (1, 4, 3)(3, 5)(2, 7, 5)(1, 6, 2, 4, 7)
(b): σ = (3, 6, 4)(1, 5, 2, 4)(1, 6, 5, 3, 2)
(c): σ, τ , and στ , where σ = (1, 2, 3)(4, 5, 6) and τ = (2, 7, 8, 5)(3, 4)

Solutions. (a): Simplifying, σ = (1, 6, 7, 4)(2, 3, 5), a disjoint 4-cycle and 3-cycle.

Thus, o(σ) = lcm(4, 3) = 12 The 4-cycle is odd, and the 3-cycle is even, so adding gives σ is odd

(b): Simplifying, σ = (1, 4)(2, 5, 6), a disjoint 2-cycle and 3-cycle. Thus, o(σ) = lcm(2, 3) = 6

The 2-cycle is odd, and the 3-cycle is even, so adding gives σ is odd

(c): σ is two disjoint 3-cycles, so o(σ) = lcm(3, 3) = 3 and since each cycle is even, σ is even

τ is a disjoint 4-cycle and 2-cycle, so o(τ) = lcm(4, 2) = 4 and since each cycle is odd, τ is even

Simplifying, στ = (1, 2, 7, 8, 6, 4)(3, 5), a disjoint 6-cycle and 2-cycle Thus, o(στ) = lcm(6, 2) = 6

Both cycles are odd, so στ is even

[Alternative for last step of (c): Since we already saw that σ and τ are both even, we have στ is
even + even = even.]

• In each part (a), (b), (c) of the previous problem, and for each k = 1, 2, 3, 4, 5, 6, find the parity (even
or odd) of gkσ and fkσ, where fk = (7, k) and gk = (7, k, 8).

Solutions. Every fk is a 2-cycle and hence is odd; every gk is a 3-cycle and hence even. Thus:

(a): σfk is odd + odd = even and σgk is odd + even = odd for every k.

(b): σfk is odd + odd = even and σgk is odd + even = odd for every k.

(a): σfk is even + odd = odd and σgk is even + even = even for every k.

Saracino #8.24: Let G be a group, and let H,K ⊆ G be subgroups. Let

HK = {hk |h ∈ H, k ∈ K}.
For G = S3, find subgroups H,K ⊆ S3 such that HK is not a subgroup of S3.

Solution. Let H = ⟨(1, 2)⟩ = {e, (1, 2)} and K = ⟨(1, 3)⟩ = {e, (1, 3)}. Then
HK = {ee, (1, 2)e, e(1, 3), (1, 2)(1, 3)} = {e, (1, 2), (1, 3), (1, 3, 2)},

which cannot be a subgroup of S3 because it has 4 elements, and 4 ∤ 6, so S3, which has |S3| = 6, cannot
have a subgroup of order 4, by Lagrange. QED

[Alternatively, you can check that HK is not closed under products, as (1, 3)(1, 2) = (1, 2, 3) ̸∈ HK. It’s
also not closed under inverses, since (1, 3, 2)−1 = (1, 2, 3) ̸∈ HK.]

Saracino #8.25: Let n ≥ 3. Prove that if n is odd, then Z(Dn) = {e}, and if n is even, then |Z(Dn)| = 2.

Proof. Odd case: For any i = 1, . . . , n − 1, observe that n ∤ i, and therefore, since n is odd, we also
have n ∤ 2i. Therefore, since o(f) = n, we have f2i ̸= e, and hence f i ̸= f−i. Thus,

gf i = f−ig ̸= f ig.

That is, g and f i do not commute with one another, so f i ̸∈ Z(Dn).
In addition, for any j = 0, . . . , n− 1, we have

(f jg)(f) = f jf−1g = f j−1g ̸= f j+1g = f(f jg),

where the inequality is because f2 ̸= e, since o(f) = n ≥ 3. Thus, f jg ̸∈ Z(Dn).



We have shown that none of the non-identity elements of Dn lie in the center, but e certainly does, since
the identity commutes with everything. Thus, Z(Dn) = {e} QED Odd case

Even case: Write n = 2m. For any i = 1, . . . ,m− 1, we have n ∤ 2i, since 2 ≤ 2i < n.
For any i = m+ 1, . . . , n− 1, we also have n ∤ 2i, since n+ 2 ≤ 2i < 2n.
That is, for any i = 1, . . . , n− 1 with i ̸= m, we have n ∤ 2i. Therefore, for any such i, we have

gf i = f−ig ̸= f ig.

That is, g and f i do not commute with one another, so f i ̸∈ Z(Dn).
In addition, for any j = 0, . . . , n− 1, we have

(f jg)(f) = f jf−1g = f j−1g ̸= f j+1g = f(f jg),

where the inequality is because f2 ̸= e, since o(f) = n ≥ 3. Thus, f jg ̸∈ Z(Dn).
Having eliminated all elements of Dn besides fm and e, we have Z(Dn) ⊆ {e, fm}. We claim the reverse
inclusion also holds, in which case we will be done. Clearly e lies in the center, so it remains to show
fm ∈ Z(Dn).
For any i ∈ Z, we have f ifm = f i+m = fm+i = fmf i, and also

(f ig)fm = f if−mg = f i−mg = f i+mg = fm(f ig),

where the third equality is because e = fn = f2m. Thus, we have shown fm commutes with every element
of Dn, so that fm ∈ Z(Dn), as desired. That is, Z(Dn) = {e, fm} has two elements. QED Even case

Saracino #9.7: Find the right cosets of H = {(0, 0), (1, 0), (2, 0)} in C3 × C2.

Solution. The full group G = C3 × C2 has 3 · 2 = 6 elements, and this subgroup H = ⟨(1, 0)⟩ has 3
elements.
We have H + (0, 0) = H, and we compute H + (0, 1) = {(0, 1), (1, 1), (2, 1)}, giving the other three
elements of G. Thus, the (two) right cosets of H are

H + (0, 0) = {(0, 0), (1, 0), (2, 0)} and H + (0, 1) = {(0, 1), (1, 1), (2, 1)}

Saracino #9.13: Let G be a group, and let A,B ⊆ G be subgroups. Define a relation R on G by

xR y iff ∃a ∈ A and b ∈ B such that x = ayb

Prove that R is an equivalence relation on G.

Proof. (Refl): Given x ∈ G, we have e ∈ A and e ∈ B, so because x = exe, we have xRx.

(Symm): Given x, y ∈ G such that xR y, we have x = ayb for some a ∈ A and b ∈ B. But then a−1 ∈ A
and b−1 ∈ B, and we have y = a−1xb−1. Thus, y Rx.

(Trans): Given x, y, z ∈ G such that xR y and y R z, we have x = ayb and y = a′zb′ for some a, a′ ∈ A
and b, b′ ∈ B.
Then aa′ ∈ A and b′b ∈ B, so x = ayb = aa′zb′b, so that xR z. QED

Saracino #9.14: Let G be a group. Define a relation R on G by: aR b means ab = ba. Decide for which
groups R is an equivalence relation on G.

Answer/Proof. We claim that R is an equivalence relation on G if and only if G is abelian.

(⇒): Given x, y ∈ G, observe that xR e because xe = x = ex, and that eR y because ey = y = ye.
Because R is transitive, it follows that xR y, which means xy = yx. QED (⇒)

(⇐): (Refl): Given g ∈ G, we have gg = gg, so that g R g.

(Symm): Given x, y ∈ G such that xR y, we have xy = yx. Therefore, yx = xy, i.e., y Rx.

(Trans): Given x, y, z ∈ G such that xR y and y R z, then [ignoring those assumptions] we have xz = zx
since G is abelian, and hence xR z. QED

[Note: In this case, then entire set G is a single equivalence class; everything is equivalent to everything
else. So this relation R is either not an equivalence relation (when G is not abelian), or else a very boring
equivalence relation (where everything is related to everything else, when G is abelian).]



Saracino #10.2(a): Find [G : H] where G = C48 and H = ⟨32⟩.
Solution. By a couple of old results, |H| = o(32) = 48/(32, 48) = 48/16 = 3. Therefore, by Lagrange,

[G : H] = |G|/|H| = 48/3 = 16

Saracino #10.3(a): Find [G : H] for G = C6 × C4 and H = {0} × C4.

Solution. We have |G| = 6 · 4 = 24 and |H| = 1 · 4 = 4. Therefore, by Lagrange,

[G : H] = |G|/|H| = 24/4 = 6

Saracino #10.7: Let p and q be prime numbers, and let G be a group of order pq. Prove that every
proper subgroup of G is cyclic.

Proof. Given H ⊆ G a proper subgroup, let m = |H|. Then by Lagrange, we have m|pq, and hence m
is one of 1, p, q, pq.
If m = pq, then |H| = |G|, so since H ⊆ G and G is finite, we have H = G, contradicting our assumption.
Thus, m is one of 1, p, q.
If m = 1, then H = {e} is trivial and hence cyclic (generated by e).
If m = p or m = q, then |H| is prime, so by a corollary to Lagrange, H is cyclic. QED

Saracino #10.9: Let G be a group, let H,K ⊆ G be subgroups, and suppose that |H| = 39 and |K| = 65.
Prove that H ∩K is cyclic.

Proof. We know from an old homework that H ∩K is a subgroup of G and hence, being contained in
H and in K, is also a subgroup of both H and K.
Letm = |H∩K|. By Lagrange applied to H∩K ⊆ H, we havem|39. By Lagrange applied to H∩K ⊆ K,
we have m|65. Thus, m|(39, 65), i.e., m|13. So either m = 1 or m = 13.
If m = 1, then H ∩K = {e} = ⟨e⟩ is cyclic.
If m = 13, then because 13 is prime, we have that H ∩K is cyclic by a corollary to Lagrange. QED

Saracino #11.4: Let H ◁ G and K ◁ G. Prove that H ∩K ◁ G.

Proof. We already know H ∩K is a subgroup of G, from some old homework.
Given x ∈ H ∩K and g ∈ G, we have gxg−1 ∈ H since x ∈ H and H ◁ G. We also have gxg−1 ∈ K
since x ∈ K and K ◁ G. Thus, gxg−1 ∈ H ∩K. QED

Saracino #11.7: Let H ◁ G and K ◁ G, and assume that H ∩K = {e}. Prove that for any x ∈ H and
y ∈ K, we have xy = yx.

Proof. Given x ∈ H and y ∈ K, let g = xyx−1y−1. We will show that g ∈ H ∩K.
Indeed, yx−1y−1 ∈ H because x−1 ∈ H and y ∈ G, with H ◁ G. Therefore, g = x(yx−1y−1) ∈ H
because it is a product of two elements of H.
Similarly, xyx−1 ∈ K because y ∈ K and x ∈ G, with K ◁ G. Because y−1 ∈ K, we have that
g = (xyx−1)y−1 is a product of two elements of K and hence lies in K.
Because g ∈ H ∩K, we have g = e, i.e., xyx−1y−1 = e, so that xy = yx. QED

Saracino #11.9: Recall from Exercise 11.8 that for subgroups H,N ⊆ G with N ◁ G, you proved that
the subset NH = {nh |n ∈ N,h ∈ H} is a subgroup of G. Suppose further that H ◁ G. Prove that NH
is also normal in G.

Proof. We already know NH is a subgroup of G. Given nh ∈ NH (i.e., with n ∈ N and h ∈ H), and
given g ∈ G, we have

g(nh)g−1 = (gng−1)(ghg−1) ∈ NH,

because gng−1 ∈ N and ghg−1 ∈ H, because both subgroups are normal in G. QED

Saracino #11.13: Suppose that A ◁ G and B ◁ H. Prove that A×B ◁ G×H.

Proof. Given (a, b) ∈ A×B and (g, h) ∈ G×H, we have



(g, h)(a, b)(g, h)−1 = (gag−1, hbh−1) ∈ A×B,

where the inclusion is because gag−1 ∈ A since A ◁ G, and because hbh−1 ∈ A since B ◁ H. QED

Saracino #11.14(a): Let G = C12 × C12 and H = ⟨(2, 2)⟩. Find the order of the element H + (5, 8) in
G/H.

Proof. We have H = {(0, 0), (2, 2), (4, 4), (6, 6), (8, 8), (10, 10)}. The order of H + (5, 8) is the smallest
positive integer n such that H + n(5, 8) = H + (0, 0), i.e., such that n(5, 8) ∈ H. We compute:

2(5, 8) = (10, 4), 3(5, 8) = (3, 0), 4(5, 8) = (8, 8) ∈ H.

Thus, o(H + (5, 8)) = 4 in G/H. QED

Saracino #11.14(b): With G and H as in the previous problem, is G/H cyclic?

Answer/Proof. NO, G/H is not cyclic

We have |G| = 12 · 12 and |H| = 6, so by Lagrange, |G/H| = |G|/|H| = 12 · 2 = 24. If G/H were cyclic,
then G/H would have an element of order 24. It suffices to show that no such element exists.
Given an arbitrary H + a ∈ G/H, the element a ∈ G is of the form a = (x, y) with x, y ∈ C12. Thus,
12a = (12x, 12y) = (0, 0) is the identity element of G. Therefore, 12(H + a) = H + (12a) = H + (0, 0) is
the identity element of G/H. Hence, H + a has order at most 12, so o(H + a) ̸= 24. QED

Saracino #11.21: Let G be an abelian group, and let H be the subgroup consisting of all elements of G
that have finite order. [Note from RLB: you may take my word for it that H is indeed a subgroup of G.]
Prove that every non-identity element of G/H has infinite order.

Proof. Given an arbitrary element Ha ∈ G/H, i.e., the coset containing some a ∈ G, suppose that Ha
has finite order. It suffices to show that Ha is the identity element of G/H.
By our supposition, there is a positive integer n ≥ 1 such that (Ha)n = He, i.e., Han = He, i.e.,
an = ane−1 ∈ H.
By definition of H, then, the element an has finite order, so there is some m ≥ 1 such that (an)m = e, i.e.,
amn = e. But then a itself has finite order, so that a ∈ H. Therefore, ae−1 = a ∈ H, so that Ha = He
is the identity element of G/H. QED

[Note: You may have noticed that we didn’t seem to use the hypothesis that G is abelian. Well, actually,
that fact is needed to show the part I said you could take my word for, that H itself, the set of elements
of finite order, is a subgroup.]

Saracino #11.23: Let G be a group, and let H be a subgroup of index 2. Prove that for every a ∈ G, we
have a2 ∈ H.

Proof. By a theorem, we have H ◁ G because [G : H] = 2. Thus, G/H is defined and is a group of
order [G : H] = 2.
Given a ∈ G, the coset Ha ∈ G/H has (Ha)2 = He by a corollary to Lagrange because G/H is a group
of order 2 with identity element He. That is, Ha2 = He, which means a2 = a2e−1 ∈ H. QED

Saracino #11.28: Let G be a group and let N ◁ G. Assume that N is cyclic. Prove that every subgroup
of N is normal in G.

Proof. Let a be a generator for N . Let H be a subgroup of N . By an old theorem, we have that H is
also cyclic, and specifically, H = ⟨an⟩ for some integer n ∈ Z.
Given g ∈ G and h ∈ H, there is an integer m ∈ Z such that h = (an)m, i.e., h = amn. In addition, since
N ◁ G, we have gag−1 ∈ N , so there is some integer k ∈ Z such that gag−1 = ak. Thus,

ghg−1 = gamng−1 =
(
gag−1

)mn
= (ak)mn = akmn = (an)km ∈ H

where the final inclusion is because H is generated by an and km ∈ Z. QED

Saracino #12.2: Define φ : G → G by φ(x) = x−1. If G is abelian, prove that φ is an automorphism of
G. If G is not abelian, prove that φ is not a homomorphism.



Proof. For any group G, we note that φ is one-to-one and onto, as follows:

1-1: Given x, y ∈ G with φ(x) = φ(y), we have x−1 = y−1, so taking inverses of both sides, we get x = y.
QED 1-1

Onto: Given y ∈ G, let x = y−1 ∈ G. Then φ(x) = x−1 = y. QED Onto

It remains to check whether φ is a homomorphism:

Abelian case. For G abelian, then given x, y ∈ G, we have

φ(xy) = (xy)−1 = y−1x−1 = x−1y−1 = φ(x)φ(y),

proving that φ is a homomorphism, and hence (since it is bijective) an isomorphism in this case.

Non-abelian case. For G non-abelian, there exist a, b ∈ G with ab ̸= ba. Let x = a−1 and y = b−1.
Then

φ(xy) = (xy)−1 = y−1x−1 = ba ̸= ba = x−1y−1 = φ(x)φ(y),

which shows that φ is not a homomorphism in this case. QED

Saracino #12.4(e): Determine whether C3 × C3 and C9 are isomorphic.

Answer/Proof. NO, not isomorphic

C9 is cyclic, but by an earlier theorem, C3×C3 is not cyclic, since gcd(3, 3) = 3 ̸= 1. However, any group
isomorphic to a cyclic group must be cyclic, so C9 cannot be isomorphic to C3 × C3 QED

Saracino #12.4(k): Determine whether D3 × C4 and D4 × C3 are isomorphic.

Answer/Proof. NO, not isomorphic
Let G = D3 × C4 and H = D4 × C3. Let’s find all the elements of order 6 in each.
Consider G. For any x ∈ D3, the order of x is one of 1, 2, 3, so the order of (x, 0) ∈ G is lcm(o(x), 1) =
o(x) ̸= 6. Similarly, since 1 and 3 have order 4 in C4, the order of (x, 1) ∈ G is lcm(o(x), 4) is divisible
by 4 and hence does not equal 6. Lastly, the order of (x, 2) ∈ G is lcm(o(x), 2), which is 6 if and only if
o(x) = 3, which happens exactly when x = f or x = f2. Thus, G has exactly two elements of order 6,
namely (f, 2) and (f2, 2).
Consider H. Note that D4 has five elements of order 4, namely the 180◦ rotation f2, and the four flips
f ig for i = 0, 1, 2, 3. In addition, C3 has two elements of order 3, namely 1 and 2. Thus, H has 5 · 2 = 10
elements of order 6, namely each element of the form (x, j) where x ∈ D4 is one of the elements of order
2, and j is 1 or 2.
If the two groups were isomorphic, then there would be an isomorphism φ : H → G. Because φ is 1-1,
the ten elements of H of order 6 would map to ten different elements of G, and because isomorphisms
preserve order of elements, each of these ten elements of G would have order 6. But G has only two
elements of order 6, a contraction. Thus, the groups are not isomorphic. QED

Saracino #12.7: Suppose A ∼= G and B ∼= H. Prove that A×B ∼= G×H.

Proof. By hypothesis, there are isomorphisms φ : A → G and ψ : B → H. Define Φ : A× B → G×H
by Φ(a, b) = (φ(a), ψ(b)) ∈ G×H.

Homom: Given (a1, b1), (a2, b2) ∈ A×B, we have

Φ
(
(a1, b1)(a2, b2)

)
= Φ(a1a2, b1b2) =

(
φ(a1a2), ψ(b1b2)

)
=

(
φ(a1)φ(a2), ψ(b1)ψ(b2)

)
=(

φ(a1), ψ(b1)
)(
φ(a2), ψ(b2)

)
= Φ

(
(a1, b1)

)
Φ
(
(a2, b2)

)
1-1: Given (a1, b1), (a2, b2) ∈ A × B such that Φ

(
(a1, b1)

)
= Φ

(
(a2, b2)

)
, we have

(
φ(a1), ψ(b1)

)
=(

φ(a2), ψ(b2)
)
.

Thus, φ(a1) = φ(a2) and ψ(b1) = ψ(b2). Since φ and ψ are 1-1, we have a1 = a2 and b1 = b2, so
(a1, b1) = (a2, b2).

Onto: Given (g, h) ∈ G×H, there exist a ∈ A and b ∈ B such that φ(a) = g and ψ(b) = h, since φ and
ψ are onto. Thus, Φ((a, b)) =

(
φ(a), ψ(b)

)
= (g, h). QED

Saracino #12.8: Is C14 isomorphic to a subgroup of C35? Of C56?



Solution. NO, C14 is not isomorphic to a subgroup of C35

If it were, then the subgroup H of C35 would have |H| = |C14| = 14. But |C35| = 35 and 14 ∤ 35, so by
Lagrange’s Theorem, C35 has no subgroup of order 14.

YES, C14 is isomorphic to a subgroup of C56

Since 56 = 14 · 4, note that H = ⟨4⟩ is a cyclic subgroup of C56, and by an old theorem, its order is
56/(4, 56) = 56/4 = 14. By a recent theorem (Theorem 12.2), since the groups C14 and H are both cyclic
of order 14, they are isomorphic. QED

Saracino #12.20(a): Let G be a finite abelian group, and let n be a positive integer relatively prime to
|G|. Let φ : G→ G by φ(x) = xn. Show that φ is an isomorphism from G to G.

Proof. Let m = |G|. Since (m,n) = 1, there are integers a, b ∈ Z such that am+ bn = 1.

Homom: Given x, y ∈ G, then φ(xy) = (xy)n = xnyn = φ(x)φ(y).

1-1: Given x, y ∈ G such that φ(x) = φ(y), we have xn = yn. In addition, by Lagrange, we have xm = e
and ym = e. Therefore,

x = xam+bn = (xm)a(xn)b = ea(xn)b = (ym)a(yn)b = yam+bn = y

Onto: We have that φ is a one-to-one function from the finite set G to itself. By the pigeonhole principle,
it is also onto. QED


