Math 350, Spring 2025 Professor Rob Benedetto
Solutions to Extra Practice Problems for Midterm Exam 2

e Find the order and the parity (even or odd) of each of the following elements of Sg:

(a): o = (1,4,3)(3,5)(2,7,5)(1,6,2,4,7)

(b): 0 =(3,6,4)(1,5,2,4)(1,6,5,3,2)

(¢c): o, 7, and o7, where 0 = (1,2,3)(4,5,6) and 7 = (2,7,8,5)(3,4)

Solutions. (a): Simplifying, o = (1,6,7,4)(2,3,5), a disjoint 4-cycle and 3-cycle.

Thus, ‘0(0) =lem(4,3) =12 ‘ The 4-cycle is odd, and the 3-cycle is even, so adding gives

(b): Simplifying, o = (1,4)(2,5,6), a disjoint 2-cycle and 3-cycle. Thus, |o(c) = lem(2,3) = 6‘

The 2-cycle is odd, and the 3-cycle is even, so adding gives

(c): o is two disjoint 3-cycles, so ‘o(a) =lem(3,3) =3 ‘ and since each cycle is even,
T is a disjoint 4-cycle and 2-cycle, so ‘ o(t) =lem(4,2) = 4‘ and since each cycle is odd,
Simplifying, o7 = (1,2,7,8,6,4)(3,5), a disjoint 6-cycle and 2-cycle Thus, \o(m) = lem(6,2) = 6\

Both cycles are odd, so

[Alternative for last step of (c): Since we already saw that o and 7 are both even, we have o7 is
even + even = even.]

e In each part (a), (b), (c) of the previous problem, and for each k = 1,2,3,4,5,6, find the parity (even
or odd) of gyo and fxo, where fi, = (7,k) and g, = (7, &, 8).

Solutions. Every f; is a 2-cycle and hence is odd; every g;, is a 3-cycle and hence even. Thus:

(a): ofy is odd 4+ odd = and ogy is odd + even = for every k.

(b): ofy is odd + odd = and ogy, is odd + even = for every k.

(a): ofy is even + odd = and ogy is even + even = for every k.

Saracino #8.24: Let G be a group, and let H, K C G be subgroups. Let
HK ={hk|h € H,k € K}.
For G = 53, find subgroups H, K C 53 such that HK is not a subgroup of Ss.
Solution. Let H = ((1,2)) ={e, (1,2)} and K = ((1,3)) = {e,(1,3)}. Then
HK ={ee, (1,2)e,e(1,3),(1,2)(1,3)} = {e,(1,2),(1,3),(1,3,2)},
which cannot be a subgroup of S3 because it has 4 elements, and 4 t 6, so S3, which has |S3| = 6, cannot
have a subgroup of order 4, by Lagrange. QED

[Alternatively, you can check that H K is not closed under products, as (1,3)(1,2) = (1,2,3) € HK. It’s
also not closed under inverses, since (1,3,2)"! = (1,2,3) € HK .|

Saracino #8.25: Let n > 3. Prove that if n is odd, then Z(D,,) = {e}, and if n is even, then |Z(D,)| = 2.

Proof. Odd case: For any i = 1,...,n — 1, observe that n { i, and therefore, since n is odd, we also
have n { 2i. Therefore, since o(f) = n, we have f2' # e, and hence f*# f~*. Thus,

gf' =1"9# I'g.
That is, g and f* do not commute with one another, so f* ¢ Z(D,,).
In addition, for any j =0,...,n — 1, we have
(P =Ff"g=1"g# 9= f(F9),
where the inequality is because f2 # e, since o(f) =n > 3. Thus, fig & Z(D,,).



We have shown that none of the non-identity elements of D, lie in the center, but e certainly does, since

the identity commutes with everything. Thus, Z(D,,) = {e} QED Odd case
Even case: Write n =2m. For any i =1,...,m — 1, we have n { 2i, since 2 < 2i < n.

For any i =m+1,...,n — 1, we also have n { 27, since n + 2 < 2i < 2n.

That is, for any ¢ = 1,...,n — 1 with ¢ # m, we have n { 2i. Therefore, for any such ¢, we have

gf* =r1"9# f'g.
That is, g and f* do not commute with one another, so f* ¢ Z(D,,).
In addition, for any j =0,...,n — 1, we have
(o)) = tg="1g# 9= f(Fy),
where the inequality is because f2 # e, since o(f) =n > 3. Thus, fig & Z(D,,).
Having eliminated all elements of D,, besides f™ and e, we have Z(D,,) C {e, f™}. We claim the reverse
inclusion also holds, in which case we will be done. Clearly e lies in the center, so it remains to show
f™e Z(Dy).
For any i € Z, we have fif™ = fitm = fm+i — fm i and also
(fof™=ff"Tg=f""g=[f""g=f"(f9),
where the third equality is because e = f™ = f?™. Thus, we have shown f™ commutes with every element
of Dy, so that f™ € Z(D,,), as desired. That is, Z(D,,) = {e, f™} has two elements. QED Even case

Saracino #9.7: Find the right cosets of H = {(0,0), (1,0), (2,0)} in C5 x Cs.

Solution. The full group G = C3 x C3 has 3 -2 = 6 elements, and this subgroup H = ((1,0)) has 3
elements.

We have H + (0,0) = H, and we compute H + (0,1) = {(0,1),(1,1),(2,1)}, giving the other three
elements of G. Thus, the (two) right cosets of H are

| H +(0,0) = {(0,0),(1,0),(2,0)} and H + (0,1) = {(0,1),(1,1), (2, 1)} |

Saracino #9.13: Let G be a group, and let A, B C G be subgroups. Define a relation R on G by
x Ry iff 3a € A and b € B such that x = ayb

Prove that R is an equivalence relation on G.

Proof. (Refl): Given x € G, we have e € A and e € B, so because z = exe, we have x Rx.

(Symm): Given x,y € G such that 2 Ry, we have = ayb for some a € A and b € B. But then a=! € A4
and b~! € B, and we have y = a~'zb~!. Thus, y Rx.

(Trans): Given z,y,z € G such that Ry and y R z, we have x = ayb and y = a’zb’ for some a,a’ € A
and b,b’ € B.
Then aa’ € A and b'b € B, so x = ayb = aa’zb'b, so that z R 2. QED

Saracino #9.14: Let G be a group. Define a relation R on G by: a Rb means ab = ba. Decide for which
groups R is an equivalence relation on G.

Answer/Proof. We claim that R is an equivalence relation on G if and only if G is abelian.

(=): Given z,y € G, observe that x Re because xe = x = ez, and that e Ry because ey = y = ye.
Because R is transitive, it follows that x Ry, which means zy = yx. QED (=)

(«<): (Refl): Given g € G, we have gg = gg, so that g Rg.
(Symm): Given z,y € G such that x Ry, we have zy = yx. Therefore, yxr = xy, i.e., y Rx.

(Trans): Given z,y, z € G such that 2 Ry and y R z, then [ignoring those assumptions] we have xz = zx
since G is abelian, and hence = R z. QED

[Note: In this case, then entire set G is a single equivalence class; everything is equivalent to everything
else. So this relation R is either not an equivalence relation (when G is not abelian), or else a very boring
equivalence relation (where everything is related to everything else, when G is abelian).]



Saracino #10.2(a): Find [G : H] where G = Cyg and H = (32).
Solution. By a couple of old results, |H| = 0(32) = 48/(32,48) = 48/16 = 3. Therefore, by Lagrange,
(G : H] = |G|/|H| = 48/3 = 16|

Saracino #10.3(a): Find [G : H] for G = Cg x C4 and H = {0} x C4.
Solution. We have |G| =6-4 =24 and |H| = 1-4 = 4. Therefore, by Lagrange,
(G : H] = |G|/|H| = 24/4 = 6]

Saracino #10.7: Let p and ¢ be prime numbers, and let G be a group of order pq. Prove that every
proper subgroup of G is cyclic.

Proof. Given H C G a proper subgroup, let m = |H|. Then by Lagrange, we have m|pq, and hence m
is one of 1, p, q, pq.

If m = pq, then |H| = |G|, so since H C G and G is finite, we have H = G, contradicting our assumption.
Thus, m is one of 1,p, q.

If m =1, then H = {e} is trivial and hence cyclic (generated by e).

If m = p or m = ¢, then |H| is prime, so by a corollary to Lagrange, H is cyclic. QED

Saracino #10.9: Let G be a group, let H, K C G be subgroups, and suppose that |H| = 39 and | K| = 65.
Prove that H N K is cyclic.

Proof. We know from an old homework that H N K is a subgroup of G and hence, being contained in
H and in K, is also a subgroup of both H and K.

Let m = |[HNK]|. By Lagrange applied to HNK C H, we have m|39. By Lagrange applied to HNK C K,
we have m|65. Thus, m|(39,65), i.e., m|13. So either m =1 or m = 13.

If m=1, then HN K = {e} = (e) is cyclic.

If m = 13, then because 13 is prime, we have that H N K is cyclic by a corollary to Lagrange. QED

Saracino #11.4: Let H < G and K < G. Prove that H N K < G.

Proof. We already know H N K is a subgroup of GG, from some old homework.
Given v € HN K and g € G, we have gzg~! € H since x € H and H < G. We also have gzg™! € K
since z € K and K <1 G. Thus, gzg~' € HNK. QED

Saracino #11.7: Let H < G and K < G, and assume that H N K = {e}. Prove that for any x € H and
y € K, we have xy = yzx.

Proof. Given z € H and y € K, let g = zyz~'y~!. We will show that g € H N K.

Indeed, yz~'y~' € H because z~' € H and y € G, with H < G. Therefore, g = z(yz~'y~!) € H
because it is a product of two elements of H.

Similarly, zyz~' € K because y € K and 2 € G, with K < G. Because y~! € K, we have that
g = (ryz~1)y~! is a product of two elements of K and hence lies in K.

Because g € H N K, we have g = e, i.e., zyz~ 'y~ = e, so that zy = yz. QED

Saracino #11.9: Recall from Exercise 11.8 that for subgroups H, N C G with N < G, you proved that
the subset NH = {nh|n € N,h € H} is a subgroup of G. Suppose further that H <t G. Prove that NH
is also normal in G.

Proof. We already know N H is a subgroup of G. Given nh € NH (i.e., with n € N and h € H), and
given g € G, we have

g(nh)g™" = (gng~")(ghg™") € NH,
because gng~! € N and ghg~' € H, because both subgroups are normal in G. QED

Saracino #11.13: Suppose that A << G and B <« H. Prove that A x B <1 G x H.
Proof. Given (a,b) € A x B and (g,h) € G x H, we have



(97 h)(aa b)(g7h)71 = (gagfl, hbh71> € Ax B7
where the inclusion is because gag~' € A since A <1 G, and because hbh~! € A since B < H. QED

Saracino #11.14(a): Let G = Ci2 x Ci2 and H = ((2,2)). Find the order of the element H + (5,8) in
G/H.
Proof. We have H = {(0,0),(2,2), (4,4),(6,6),(8,8),(10,10)}. The order of H + (5,8) is the smallest
positive integer n such that H + n(5,8) = H + (0,0), i.e., such that n(5,8) € H. We compute:

2(5,8) =(10,4), 3(5,8) =(3,0), 4(5,8) =(8,8) €
Thus, o(H + (5,8)) = 4 in G/H. QED

Saracino #11.14(b): With G and H as in the previous problem, is G/H cyclic?

Answer /Proof. ‘NO7 G/H is not cyclic‘

We have |G| = 12-12 and |H| = 6, so by Lagrange, |G/H| = |G|/|H| =12 -2 = 24. If G/H were cyclic,
then G/H would have an element of order 24. It suffices to show that no such element exists.

Given an arbitrary H + a € G/H, the element a € G is of the form a = (x,y) with z,y € C12. Thus,
12a = (122, 12y) = (0,0) is the identity element of G. Therefore, 12(H + a) = H + (12a) = H + (0,0) is
the identity element of G/H. Hence, H + a has order at most 12, so o(H + a) # 24. QED

Saracino #11.21: Let GG be an abelian group, and let H be the subgroup consisting of all elements of G
that have finite order. [Note from RLB: you may take my word for it that H is indeed a subgroup of G.]
Prove that every non-identity element of G/H has infinite order.

Proof. Given an arbitrary element Ha € G/H, i.e., the coset containing some a € G, suppose that Ha
has finite order. It suffices to show that Ha is the identity element of G/H.

By our supposition, there is a positive integer n > 1 such that (Ha)" = He, i.e., Ha" = He, i.e.,
a" =a"e ' € H.

By definition of H, then, the element ™ has finite order, so there is some m > 1 such that (a™)™ = e, i.e.,
a™ = e. But then a itself has finite order, so that a € H. Therefore, ae™' = a € H, so that Ha = He
is the identity element of G/H. QED

[Note: You may have noticed that we didn’t seem to use the hypothesis that G is abelian. Well, actually,
that fact is needed to show the part I said you could take my word for, that H itself, the set of elements
of finite order, is a subgroup.]

Saracino #11.23: Let G be a group, and let H be a subgroup of index 2. Prove that for every a € G, we
have a® € H.

Proof. By a theorem, we have H < G because [G : H] = 2. Thus, G/H is defined and is a group of
order [G: H] = 2.

Given a € G, the coset Ha € G/H has (Ha)? = He by a corollary to Lagrange because G/H is a group
of order 2 with identity element He. That is, Ha? = He, which means a? = a’e~! € H. QED

Saracino #11.28: Let G be a group and let N <1 G. Assume that N is cyclic. Prove that every subgroup
of N is normal in G.

Proof. Let a be a generator for N. Let H be a subgroup of N. By an old theorem, we have that H is
also cyclic, and specifically, H = (a™) for some integer n € Z.
Given g € G and h € H, there is an integer m € Z such that h = (a"™)™, i.e., h = a™". In addition, since
N < G, we have gag™' € N, so there is some integer k € Z such that gag~! = a*. Thus,

ghg—l — gamng—l _ (gag—l)mn — (ak)mn — akzmn — (an)km cH
where the final inclusion is because H is generated by o™ and km € Z. QED

Saracino #12.2: Define ¢ : G — G by p(x) = x~1. If G is abelian, prove that ¢ is an automorphism of
G. If G is not abelian, prove that ¢ is not a homomorphism.



Proof. For any group GG, we note that ¢ is one-to-one and onto, as follows:

1

1-1: Given x,y € G with p(x) = ¢(y), we have 2! = y~!, so taking inverses of both sides, we get x = .

QED 1-1
Onto: Given y € G, let x =y~ € G. Then p(z) =2~ ! =y. QED Onto
It remains to check whether ¢ is a homomorphism:
Abelian case. For GG abelian, then given x,y € G, we have
pry) = (zy) =yl = p(2)e(y),

proving that ¢ is a homomorphism, and hence (since it is bijective) an isomorphism in this case.

= xilyf

Non-abelian case. For GG non-abelian, there exist a,b € G with ab # ba. Let + = a~! and y = b~ L.
Then

plry) = (@y) =y e =baF ba =27y = p(x)p(y),
which shows that ¢ is not a homomorphism in this case. QED

Saracino #12.4(e): Determine whether C3 x C3 and Cy are isomorphic.

Answer /Proof. ‘NO, not isomorphic

Cy is cyclic, but by an earlier theorem, C3 x C3 is not cyclic, since ged(3,3) = 3 # 1. However, any group
isomorphic to a cyclic group must be cyclic, so Cy cannot be isomorphic to C3 x C3 QED

Saracino #12.4(k): Determine whether D3 x C4 and D4 x C3 are isomorphic.

Answer /Proof. ‘NO7 not isomorphic‘

Let G = D3 x Cqy and H = D4 x C3. Let’s find all the elements of order 6 in each.

Consider G. For any = € Ds, the order of z is one of 1,2, 3, so the order of (z,0) € G is lem(o(z),1) =
o(z) # 6. Similarly, since 1 and 3 have order 4 in C4, the order of (x,1) € G is lem(o(x),4) is divisible
by 4 and hence does not equal 6. Lastly, the order of (z,2) € G is lem(o(z), 2), which is 6 if and only if
o(r) = 3, which happens exactly when = f or x = f2. Thus, G has exactly two elements of order 6,
namely (f,2) and (f2,2).

Consider H. Note that D4 has five elements of order 4, namely the 180° rotation f2, and the four flips
fig for i = 0,1,2,3. In addition, C3 has two elements of order 3, namely 1 and 2. Thus, H has 5-2 = 10
elements of order 6, namely each element of the form (z,j) where x € Dy is one of the elements of order
2,and jis 1 or 2.

If the two groups were isomorphic, then there would be an isomorphism ¢ : H — G. Because ¢ is 1-1,
the ten elements of H of order 6 would map to ten different elements of GG, and because isomorphisms
preserve order of elements, each of these ten elements of G would have order 6. But G has only two
elements of order 6, a contraction. Thus, the groups are not isomorphic. QED

Saracino #12.7: Suppose A =2 G and B = H. Prove that Ax B2 G x H.
Proof. By hypothesis, there are isomorphisms ¢ : A - G and ¥ : B — H. Define ®: Ax B — G x H
by ®(a,b) = (¢(a), (b)) € G x H.
Homom: Given (aj,b1), (az,b2) € A x B, we have

®((a1,b1)(ag, b2)) = ®(arag, biby) = (p(araz), P(biba)) = (@(a1)ep(az), ¥ (b1)y (b)) =
(¢(a1),v(b1)) (p(az), ¥ (b)) = ®((a1,b1))®((az, b))
1-1: Given (a1,b1), (az,b2) € A x B such that ®((a1,b1)) = ®((az,b2)), we have (p(a1),¥(b1)) =

(w(az), ¥ (b2)).
Thus, p(a1) = ¢(a2) and ¥(b1) = 1(by). Since ¢ and ¢ are 1-1, we have a3 = a2 and by = by, so

(a1,b1) = (a2, b2).
Onto: Given (g,h) € G x H, there exist a € A and b € B such that ¢(a) = g and (b) = h, since ¢ and
v are onto. Thus, ®((a,b)) = (¢(a),v(b)) = (g, h). QED

Saracino #12.8: Is ('14 isomorphic to a subgroup of Cs57 Of Csg7



Solution. | NO, (4 is not isomorphic to a subgroup of Css ‘
If it were, then the subgroup H of C35 would have |H| = |C14] = 14. But |C35| = 35 and 14 1 35, so by
Lagrange’s Theorem, C'35 has no subgroup of order 14.

‘YES, (C'14 is isomorphic to a subgroup of Csg ‘

Since 56 = 14 - 4, note that H = (4) is a cyclic subgroup of Csg, and by an old theorem, its order is
56/(4,56) = 56/4 = 14. By a recent theorem (Theorem 12.2), since the groups C14 and H are both cyclic
of order 14, they are isomorphic. QED

Saracino #12.20(a): Let G be a finite abelian group, and let n be a positive integer relatively prime to
|G|. Let ¢ : G — G by p(z) = ™. Show that ¢ is an isomorphism from G to G.

Proof. Let m = |G|. Since (m,n) = 1, there are integers a,b € Z such that am + bn = 1.

Homom: Given z,y € G, then ¢(xy) = (zy)" = 2"y" = p(z)p(y).

1-1: Given z,y € G such that p(x) = ¢(y), we have ™ = y". In addition, by Lagrange, we have 2™ = e
and y™ = e. Therefore,

T = xam+bn — (xm)a(xn)b — ea('rn)b — (ym)a(yn)b — yam+bn =y
Onto: We have that ¢ is a one-to-one function from the finite set G to itself. By the pigeonhole principle,
it is also onto. QED



