Solutions to Extra Practice Problems for Midterm Exam 2

• Find the order and the parity (even or odd) of each of the following elements of S_8 : (a): $\sigma = (1, 4, 3)(3, 5)(2, 7, 5)(1, 6, 2, 4, 7)$ (b): $\sigma = (3, 6, 4)(1, 5, 2, 4)(1, 6, 5, 3, 2)$ (c): σ , τ , and $\sigma\tau$, where $\sigma = (1, 2, 3)(4, 5, 6)$ and $\tau = (2, 7, 8, 5)(3, 4)$ **Solutions.** (a): Simplifying, $\sigma = (1, 6, 7, 4)(2, 3, 5)$, a disjoint 4-cycle and 3-cycle. Thus, $o(\sigma) = \text{lcm}(4, 3) = 12$ The 4-cycle is odd, and the 3-cycle is even, so adding gives σ is odd (b): Simplifying, $\sigma = (1, 4)(2, 5, 6)$, a disjoint 2-cycle and 3-cycle. Thus, $o(\sigma) = \text{lcm}(2, 3) = 6$ The 2-cycle is odd, and the 3-cycle is even, so adding gives σ is odd (c): σ is two disjoint 3-cycles, so $o(\sigma) = \text{lcm}(3, 3) = 3$ and since each cycle is even, σ is even τ is a disjoint 4-cycle and 2-cycle, so $o(\tau) = \text{lcm}(4, 2) = 4$ and since each cycle is odd, τ is even Simplifying, $\sigma\tau = (1, 2, 7, 8, 6, 4)(3, 5)$, a disjoint 6-cycle and 2-cycle Thus, $o(\sigma\tau) = \text{lcm}(6, 2) = 6$ Both cycles are odd, so $\sigma\tau$ is even

[Alternative for last step of (c): Since we already saw that σ and τ are both even, we have $\sigma\tau$ is even + even = even.]

• In each part (a), (b), (c) of the previous problem, and for each k = 1, 2, 3, 4, 5, 6, find the parity (even or odd) of $g_k \sigma$ and $f_k \sigma$, where $f_k = (7, k)$ and $g_k = (7, k, 8)$.

Solutions. Every f_k is a 2-cycle and hence is odd; every g_k is a 3-cycle and hence even. Thus:

(a): σf_k is odd + odd = even and σg_k is odd + even = odd for every k.

(b): σf_k is odd + odd = even and σg_k is odd + even = odd for every k.

(a): σf_k is even + odd = $\left| \text{odd} \right|$ and σg_k is even + even = $\left| \text{even} \right|$ for every k.

Saracino #8.24: Let G be a group, and let $H, K \subseteq G$ be subgroups. Let $HK = \{hk \mid h \in H, k \in K\}.$

For $G = S_3$, find subgroups $H, K \subseteq S_3$ such that HK is **not** a subgroup of S_3 .

Solution. Let $H = \langle (1,2) \rangle = \{e, (1,2)\}$ and $K = \langle (1,3) \rangle = \{e, (1,3)\}$. Then

 $HK = \{ee, (1,2)e, e(1,3), (1,2)(1,3)\} = \{e, (1,2), (1,3), (1,3,2)\},\$

which cannot be a subgroup of S_3 because it has 4 elements, and $4 \nmid 6$, so S_3 , which has $|S_3| = 6$, cannot have a subgroup of order 4, by Lagrange. QED

[Alternatively, you can check that HK is not closed under products, as $(1,3)(1,2) = (1,2,3) \notin HK$. It's also not closed under inverses, since $(1,3,2)^{-1} = (1,2,3) \notin HK$.]

Saracino #8.25: Let $n \ge 3$. Prove that if n is odd, then $Z(D_n) = \{e\}$, and if n is even, then $|Z(D_n)| = 2$. **Proof. Odd case**: For any i = 1, ..., n - 1, observe that $n \nmid i$, and therefore, since n is odd, we also have $n \nmid 2i$. Therefore, since o(f) = n, we have $f^{2i} \neq e$, and hence $f^i \neq f^{-i}$. Thus,

$$f^i = f^{-i}g \neq f^ig.$$

That is, g and f^i do not commute with one another, so $f^i \notin Z(D_n)$. In addition, for any j = 0, ..., n - 1, we have

$$f^{j}g)(f) = f^{j}f^{-1}g = f^{j-1}g \neq f^{j+1}g = f(f^{j}g),$$

where the inequality is because $f^2 \neq e$, since $o(f) = n \geq 3$. Thus, $f^j g \notin Z(D_n)$.

We have shown that none of the non-identity elements of D_n lie in the center, but *e* certainly does, since the identity commutes with everything. Thus, $Z(D_n) = \{e\}$ QED Odd case

Even case: Write n = 2m. For any i = 1, ..., m - 1, we have $n \nmid 2i$, since $2 \le 2i < n$. For any i = m + 1, ..., n - 1, we also have $n \nmid 2i$, since $n + 2 \le 2i < 2n$. That is, for any i = 1, ..., n - 1 with $i \ne m$, we have $n \nmid 2i$. Therefore, for any such i, we have

$$gf^i = f^{-i}g \neq f^ig$$

That is, g and f^i do not commute with one another, so $f^i \notin Z(D_n)$. In addition, for any j = 0, ..., n - 1, we have

$$(f^{j}g)(f) = f^{j}f^{-1}g = f^{j-1}g \neq f^{j+1}g = f(f^{j}g),$$

where the inequality is because $f^2 \neq e$, since $o(f) = n \geq 3$. Thus, $f^j g \notin Z(D_n)$. Having eliminated all elements of D_n besides f^m and e, we have $Z(D_n) \subseteq \{e, f^m\}$. We claim the reverse

inclusion also holds, in which case we will be done. Clearly e lies in the center, so it remains to show $f^m \in Z(D_n)$.

For any $i \in \mathbb{Z}$, we have $f^i f^m = f^{i+m} = f^{m+i} = f^m f^i$, and also $(f^i g) f^m = f^i f^{-m} g = f^{i-m} g = f^{i+m} g = f^m (f^i g),$

where the third equality is because $e = f^n = f^{2m}$. Thus, we have shown f^m commutes with every element of D_n , so that $f^m \in Z(D_n)$, as desired. That is, $Z(D_n) = \{e, f^m\}$ has two elements. QED Even case

Saracino #9.7: Find the right cosets of $H = \{(0,0), (1,0), (2,0)\}$ in $C_3 \times C_2$.

Solution. The full group $G = C_3 \times C_2$ has $3 \cdot 2 = 6$ elements, and this subgroup $H = \langle (1,0) \rangle$ has 3 elements.

We have H + (0,0) = H, and we compute $H + (0,1) = \{(0,1), (1,1), (2,1)\}$, giving the other three elements of G. Thus, the (two) right cosets of H are

 $H + (0,0) = \{(0,0), (1,0), (2,0)\}$ and $H + (0,1) = \{(0,1), (1,1), (2,1)\}$

Saracino #9.13: Let G be a group, and let $A, B \subseteq G$ be subgroups. Define a relation R on G by x R y iff $\exists a \in A$ and $b \in B$ such that x = ayb

Prove that R is an equivalence relation on G.

Proof. (Refl): Given $x \in G$, we have $e \in A$ and $e \in B$, so because x = exe, we have x R x.

(**Symm**): Given $x, y \in G$ such that x R y, we have x = ayb for some $a \in A$ and $b \in B$. But then $a^{-1} \in A$ and $b^{-1} \in B$, and we have $y = a^{-1}xb^{-1}$. Thus, y R x.

(**Trans**): Given $x, y, z \in G$ such that x R y and y R z, we have x = ayb and y = a'zb' for some $a, a' \in A$ and $b, b' \in B$.

Then $aa' \in A$ and $b'b \in B$, so x = ayb = aa'zb'b, so that x R z. QED

Saracino #9.14: Let G be a group. Define a relation R on G by: a R b means ab = ba. Decide for which groups R is an equivalence relation on G.

Answer/Proof. We claim that R is an equivalence relation on G if and only if G is abelian.

 (\Rightarrow) : Given $x, y \in G$, observe that x R e because xe = x = ex, and that e R y because ey = y = ye. Because R is transitive, it follows that x R y, which means xy = yx. QED (\Rightarrow)

(\Leftarrow): (**Refl**): Given $g \in G$, we have gg = gg, so that g R g.

(Symm): Given $x, y \in G$ such that x R y, we have xy = yx. Therefore, yx = xy, i.e., y R x.

(**Trans**): Given $x, y, z \in G$ such that x R y and y R z, then [ignoring those assumptions] we have xz = zx since G is abelian, and hence x R z. QED

[Note: In this case, then entire set G is a single equivalence class; everything is equivalent to everything else. So this relation R is either *not* an equivalence relation (when G is not abelian), or else a very boring equivalence relation (where *everything* is related to everything else, when G is abelian).]

Saracino #10.2(a): Find [G:H] where $G = C_{48}$ and $H = \langle 32 \rangle$. **Solution**. By a couple of old results, |H| = o(32) = 48/(32, 48) = 48/16 = 3. Therefore, by Lagrange, [G:H] = |G|/|H| = 48/3 = 16

Saracino #10.3(a): Find [G:H] for $G = C_6 \times C_4$ and $H = \{0\} \times C_4$. **Solution**. We have $|G| = 6 \cdot 4 = 24$ and $|H| = 1 \cdot 4 = 4$. Therefore, by Lagrange, $\boxed{[G:H] = |G|/|H| = 24/4 = 6}$

Saracino #10.7: Let p and q be prime numbers, and let G be a group of order pq. Prove that every proper subgroup of G is cyclic.

Proof. Given $H \subseteq G$ a proper subgroup, let m = |H|. Then by Lagrange, we have m|pq, and hence m is one of 1, p, q, pq. If m = pq, then |H| = |G|, so since $H \subseteq G$ and G is finite, we have H = G, contradicting our assumption.

If m = pq, then |H| = |G|, so since $H \subseteq G$ and G is finite, we have H = G, contradicting our assumption. Thus, m is one of 1, p, q.

If m = 1, then $H = \{e\}$ is trivial and hence cyclic (generated by e).

If m = p or m = q, then |H| is prime, so by a corollary to Lagrange, H is cyclic.

QED

Saracino #10.9: Let G be a group, let $H, K \subseteq G$ be subgroups, and suppose that |H| = 39 and |K| = 65. Prove that $H \cap K$ is cyclic.

Proof. We know from an old homework that $H \cap K$ is a subgroup of G and hence, being contained in H and in K, is also a subgroup of both H and K.

Let $m = |H \cap K|$. By Lagrange applied to $H \cap K \subseteq H$, we have m|39. By Lagrange applied to $H \cap K \subseteq K$, we have m|65. Thus, m|(39, 65), i.e., m|13. So either m = 1 or m = 13. If m = 1, then $H \cap K = \{e\} = \langle e \rangle$ is cyclic.

If m = 13, then because 13 is prime, we have that $H \cap K$ is cyclic by a corollary to Lagrange. QED

Saracino #10.24: Let G be a group, and suppose there is $g \in G$ such that Z(g) = Z(G). Prove that G is abelian.

Proof. We have $g \in Z(g)$ since g commutes with itself. By hypothesis, then, we have $g \in Z(G)$. We claim that Z(G) = G. The forward inclusion is obvious. For the reverse inclusion, given $x \in G$, we have xg = gx, because $g \in Z(G)$. Thus, we have $x \in Z(g)$, by definition of Z(g). By the hypothesis again, then, we have $x \in Z(G)$, proving out claim.

Since Z(G) = G, every element of G commutes with every element of G, i.e., G is abelian. QED

Saracino #10.26: Find the conjugacy classes in D_4 , and write down the class equation for D_4 .

Solution. We know that $Z(D_4) = \{e, f^2\}$, so each of those two elements is in its own conjugacy class. Consider f next. Conjugating by any element f^i gives $f^i f f^{-i} = f$, and conjugating by any element $f^i g$ (which is its own inverse) gives

$$(f^{i}g)f(f^{i}g) = f^{i}(gf^{i+1})g = f^{i}f^{-(i+1)}gg = f^{3}.$$

Thus, the conjugacy class of f is $\{f, f^3\}$.

Next, consider g. Conjugating by f^i gives

$$f^i g f^{-i} = f^i f^i g = f^{2i} g$$

which is either g if i is even, or f^2g if i is odd. Conjugating by f^ig gives

$$(f^ig)g(f^ig) = f^ief^ig = f^{2i}g,$$

the same result. Thus, the conjugacy class of g is $\{g, f^2g\}$. Finally, consider fg. Conjugating by f^i gives

$$f^{i}(fg)f^{-i} = f^{i+1}f^{i}g = f^{2i+1}g$$

which is either fg if i is even, or f^3g if i is odd. Conjugating by f^ig gives

$$(f^{i}g)fg(f^{i}g) = f^{i}(f^{-1}g)g(f^{i})g = f^{i-1}ef^{i}g = f^{2i-1}g,$$

which is either fg if i is odd, or f^3g if i is even. Thus, the conjugacy class of fg is $\{fg, f^3g\}$.

So there are five conjugacy classes: three with two elements ([f], [g], and [fg]) and two with one element $([e] \text{ and } [f^2])$; but we combine the one-element classes in the class equation. Thus, since $|D_4| = 8$, the class equation here is:

$$8 = 2 + 2 + 2 + 2$$

Saracino #10.27: Let G be a finite group. Prove that [G : Z(G)] cannot be a prime number.

Proof. If Z(G) = G, so [G : Z(G)] = 1, which is not prime. Thus, we may assume for the rest of the proof that $Z(G) \subsetneq G$. In particular, we may pick $a \in G \setminus Z(G)$.

Suppose that [G : Z(G)] is a prime number p. We know that Z(a) is a subgroup of G, and that Z(a) contains a as well as every element of Z(G). Thus, we have $Z(G) \subsetneq Z(a) \subseteq G$.

Write m = |Z(G)|, so that by Lagrange's Theorem, we have |G| = |Z(G)|[G : Z(G)] = mp. Let n = |Z(a)|. Then again by Lagrange, we have m|n with n > m (because $Z(G) \subsetneq Z(a)$), and hence there is some integer $k \ge 2$ such that n = mk.

Lagrange also tells us that n|(mp) (because $Z(a) \subseteq G$), so that there is some integer $\ell \ge 1$ with $n\ell = mp$. Thus, $mk\ell = mp$, so that $k\ell = p$. Since p is prime and $k \ge 2$, we must have k = p.

Thus, |Z(a)| = n = mp = |G|, and because G is finite, it follows that Z(a) = G. That is, a commutes with every element of G. But then $a \in Z(G)$, contradicting our choice of a. Therefore, our supposition that [G : Z(G)] is prime is impossible. QED

Saracino #11.3: Let $H \triangleleft G$, and assume that |H| = 2. Prove that $H \subseteq Z(G)$.

Proof. We can write $H = \{e, a\}$ with $a \neq e$. Given $h \in H$ and $x \in G$, we must show that xh = hx. If h = e, then xh = xe = x = ex = hx, as desired.

If h = a, then $xhx^{-1} \in H$ because $H \triangleleft G$. If $xhx^{-1} = e$, then xh = x, so $h = e \neq a$, a contradiction; so $xhx^{-1} \neq e$. But then $xhx^{-1} = a = h$, so that xh = hx. QED

Saracino #11.4: Let $H \triangleleft G$ and $K \triangleleft G$. Prove that $H \cap K \triangleleft G$.

Proof. We already know $H \cap K$ is a subgroup of G, from some old homework. Given $x \in H \cap K$ and $g \in G$, we have $gxg^{-1} \in H$ since $x \in H$ and $H \triangleleft G$. We also have $gxg^{-1} \in K$ since $x \in K$ and $K \triangleleft G$. Thus, $gxg^{-1} \in H \cap K$. QED

Saracino #11.7: Let $H \triangleleft G$ and $K \triangleleft G$, and assume that $H \cap K = \{e\}$. Prove that for any $x \in H$ and $y \in K$, we have xy = yx.

Proof. Given $x \in H$ and $y \in K$, let $g = xyx^{-1}y^{-1}$. We will show that $g \in H \cap K$. Indeed, $yx^{-1}y^{-1} \in H$ because $x^{-1} \in H$ and $y \in G$, with $H \triangleleft G$. Therefore, $g = x(yx^{-1}y^{-1}) \in H$ because it is a product of two elements of H. Similarly, $xyx^{-1} \in K$ because $y \in K$ and $x \in G$, with $K \triangleleft G$. Because $y^{-1} \in K$, we have that $g = (xyx^{-1})y^{-1}$ is a product of two elements of K and hence lies in K. Because $g \in H \cap K$, we have g = e, i.e., $xyx^{-1}y^{-1} = e$, so that xy = yx. QED

Saracino #11.9: Recall from Exercise 11.8 that for subgroups $H, N \subseteq G$ with $N \triangleleft G$, you proved that the subset $NH = \{nh \mid n \in N, h \in H\}$ is a subgroup of G. Suppose further that $H \triangleleft G$. Prove that NH is also normal in G.

Proof. We already know NH is a subgroup of G. Given $nh \in NH$ (i.e., with $n \in N$ and $h \in H$), and given $g \in G$, we have

$$g(nh)g^{-1} = (gng^{-1})(ghg^{-1}) \in NH,$$

because $gng^{-1} \in N$ and $ghg^{-1} \in H$, because both subgroups are normal in G. QED

Saracino #11.13: Suppose that $A \triangleleft G$ and $B \triangleleft H$. Prove that $A \times B \triangleleft G \times H$. **Proof.** Given $(a, b) \in A \times B$ and $(g, h) \in G \times H$, we have

$$(g,h)(a,b)(g,h)^{-1} = (gag^{-1}, hbh^{-1}) \in A \times B,$$

where the inclusion is because $gag^{-1} \in A$ since $A \triangleleft G$, and because $hbh^{-1} \in A$ since $B \triangleleft H$. QED

Saracino #11.14(a): Let $G = C_{12} \times C_{12}$ and $H = \langle (2,2) \rangle$. Find the order of the element H + (5,8) in G/H.

Proof. We have $H = \{(0,0), (2,2), (4,4), (6,6), (8,8), (10,10)\}$. The order of H + (5,8) is the smallest positive integer n such that H + n(5,8) = H + (0,0), i.e., such that $n(5,8) \in H$. We compute:

$$(5,8) = (10,4), \quad 3(5,8) = (3,0), \quad 4(5,8) = (8,8) \in H.$$

Thus, o(H + (5, 8)) = 4 in G/H.

QED

QED

Saracino #11.14(b): With G and H as in the previous problem, is G/H cyclic?

Answer/Proof. NO, G/H is not cyclic

 $\mathbf{2}$

We have $|G| = 12 \cdot 12$ and |H| = 6, so by Lagrange, $|G/H| = |G|/|H| = 12 \cdot 2 = 24$. If G/H were cyclic, then G/H would have an element of order 24. It suffices to show that no such element exists. Given an arbitrary $H + a \in G/H$, the element $a \in G$ is of the form a = (x, y) with $x, y \in C_{12}$. Thus, 12a = (12x, 12y) = (0, 0) is the identity element of G. Therefore, 12(H + a) = H + (12a) = H + (0, 0) is the identity element of G/H. Hence, H + a has order at most 12, so $o(H + a) \neq 24$. QED

Saracino #11.21: Let G be an abelian group, and let H be the subgroup consisting of all elements of G that have finite order. [Note from RLB: you may take my word for it that H is indeed a subgroup of G.] Prove that every non-identity element of G/H has infinite order.

Proof. Given an arbitrary element $Ha \in G/H$, i.e., the coset containing some $a \in G$, suppose that Ha has finite order. It suffices to show that Ha is the identity element of G/H.

By our supposition, there is a positive integer $n \ge 1$ such that $(Ha)^n = He$, i.e., $Ha^n = He$, i.e., $a^n = a^n e^{-1} \in H$.

By definition of H, then, the element a^n has finite order, so there is some $m \ge 1$ such that $(a^n)^m = e$, i.e., $a^{mn} = e$. But then a itself has finite order, so that $a \in H$. Therefore, $ae^{-1} = a \in H$, so that Ha = He is the identity element of G/H. QED

[Note: You may have noticed that we didn't seem to use the hypothesis that G is abelian. Well, actually, that fact is needed to show the part I said you could take my word for, that H itself, the set of elements of finite order, is a subgroup.]

Saracino #11.23: Let G be a group, and let H be a subgroup of index 2. Prove that for every $a \in G$, we have $a^2 \in H$.

Proof. By a theorem, we have $H \triangleleft G$ because [G : H] = 2. Thus, G/H is defined and is a group of order [G : H] = 2.

Given $a \in G$, the coset $Ha \in G/H$ has $(Ha)^2 = He$ by a corollary to Lagrange because G/H is a group of order 2 with identity element He. That is, $Ha^2 = He$, which means $a^2 = a^2e^{-1} \in H$. QED

Saracino #11.28: Let G be a group and let $N \triangleleft G$. Assume that N is cyclic. Prove that every subgroup of N is normal in G.

Proof. Let a be a generator for N. Let H be a subgroup of N. By an old theorem, we have that H is also cyclic, and specifically, $H = \langle a^n \rangle$ for some integer $n \in \mathbb{Z}$.

Given $g \in G$ and $h \in H$, there is an integer $m \in \mathbb{Z}$ such that $h = (a^n)^m$, i.e., $h = a^{mn}$. In addition, since $N \triangleleft G$, we have $gag^{-1} \in N$, so there is some integer $k \in \mathbb{Z}$ such that $gag^{-1} = a^k$. Thus,

$$ghg^{-1} = ga^{mn}g^{-1} = (gag^{-1})^{mn} = (a^k)^{mn} = a^{kmn} = (a^n)^{km} \in H$$

where the final inclusion is because H is generated by a^n and $km \in \mathbb{Z}$.

Saracino #11.29: Suppose that G/Z(G) is cyclic. Prove that G is abelian.

Proof. For ease of notation, write Z = Z(G). By hypothesis, there exists $a \in G$ such that $Za \in G/Z$ is a generator for G/Z.

Given $x, y \in G$, consider the cosets Zx and Zy, which are elements of G/Z. Since $G/Z = \langle Za \rangle$, there exist integers $m, n \in \mathbb{Z}$ such that $Zx = (Za)^m$ and $Zy = (Za)^n$. That is, $Zx = Za^m$ and $Zy = Za^n$. Equivalently, $x \in Za^m$ and $y \in Za^n$, meaning that there exist $w, z \in Z$ such that $x = wa^m$ and $y = za^n$. Hence,

$$xy = wa^m za^n = zwa^m a^n = zwa^{m+n} = zwa^n a^m = za^n wa^m = yx,$$

where the first and fifth equalities are because $w, z \in Z(G)$ commute with every element of G. QED

Saracino #12.2: Define $\varphi: G \to G$ by $\varphi(x) = x^{-1}$. If G is abelian, prove that φ is an automorphism of G. If G is not abelian, prove that φ is not a homomorphism.

Proof. For any group G, we note that φ is one-to-one and onto, as follows:

1-1: Given $x, y \in G$ with $\varphi(x) = \varphi(y)$, we have $x^{-1} = y^{-1}$, so taking inverses of both sides, we get x = y. QED 1-1

Onto: Given $y \in G$, let $x = y^{-1} \in G$. Then $\varphi(x) = x^{-1} = y$. QED Onto

It remains to check whether φ is a homomorphism:

Abelian case. For G abelian, then given $x, y \in G$, we have

$$\varphi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \varphi(x)\varphi(y),$$

proving that φ is a homomorphism, and hence (since it is bijective) an isomorphism in this case.

Non-abelian case. For G non-abelian, there exist $a, b \in G$ with $ab \neq ba$. Let $x = a^{-1}$ and $y = b^{-1}$. Then

$$\varphi(xy) = (xy)^{-1} = y^{-1}x^{-1} = ba \neq ba = x^{-1}y^{-1} = \varphi(x)\varphi(y)$$

QED

which shows that φ is *not* a homomorphism in this case.

Saracino #12.4(e): Determine whether $C_3 \times C_3$ and C_9 are isomorphic.

Answer/Proof. NO, not isomorphic

 C_9 is cyclic, but by an earlier theorem, $C_3 \times C_3$ is not cyclic, since $gcd(3,3) = 3 \neq 1$. However, any group isomorphic to a cyclic group must be cyclic, so C_9 cannot be isomorphic to $C_3 \times C_3$ QED

Saracino #12.4(k): Determine whether $D_3 \times C_4$ and $D_4 \times C_3$ are isomorphic.

Answer/Proof. NO, not isomorphic

Let $G = D_3 \times C_4$ and $H = D_4 \times C_3$. Let's find all the elements of order 6 in each.

Consider G. For any $x \in D_3$, the order of x is one of 1, 2, 3, so the order of $(x, 0) \in G$ is $lcm(o(x), 1) = o(x) \neq 6$. Similarly, since 1 and 3 have order 4 in C_4 , the order of $(x, 1) \in G$ is lcm(o(x), 4) is divisible by 4 and hence does not equal 6. Lastly, the order of $(x, 2) \in G$ is lcm(o(x), 2), which is 6 if and only if o(x) = 3, which happens exactly when x = f or $x = f^2$. Thus, G has exactly two elements of order 6, namely (f, 2) and $(f^2, 2)$.

Consider *H*. Note that D_4 has five elements of order 4, namely the 180° rotation f^2 , and the four flips $f^i g$ for i = 0, 1, 2, 3. In addition, C_3 has two elements of order 3, namely 1 and 2. Thus, *H* has $5 \cdot 2 = 10$ elements of order 6, namely each element of the form (x, j) where $x \in D_4$ is one of the elements of order 2, and j is 1 or 2.

If the two groups were isomorphic, then there would be an isomorphism $\varphi : H \to G$. Because φ is 1-1, the ten elements of H of order 6 would map to ten different elements of G, and because isomorphisms preserve order of elements, each of these ten elements of G would have order 6. But G has only two elements of order 6, a contraction. Thus, the groups are not isomorphic. QED

Saracino #12.7: Suppose $A \cong G$ and $B \cong H$. Prove that $A \times B \cong G \times H$.

Proof. By hypothesis, there are isomorphisms $\varphi : A \to G$ and $\psi : B \to H$. Define $\Phi : A \times B \to G \times H$ by $\Phi(a, b) = (\varphi(a), \psi(b)) \in G \times H$.

Homom: Given $(a_1, b_1), (a_2, b_2) \in A \times B$, we have

 $\Phi((a_1, b_1)(a_2, b_2)) = \Phi(a_1a_2, b_1b_2) = (\varphi(a_1a_2), \psi(b_1b_2)) = (\varphi(a_1)\varphi(a_2), \psi(b_1)\psi(b_2)) = (\varphi(a_1), \psi(b_1))(\varphi(a_2), \psi(b_2)) = \Phi((a_1, b_1))\Phi((a_2, b_2))$ $1-1: \text{ Given } (a_1, b_1), (a_2, b_2) \in A \times B \text{ such that } \Phi((a_1, b_1)) = \Phi((a_2, b_2)), \text{ we have } (\varphi(a_1), \psi(b_1)) = (\varphi(a_2), \psi(b_2)).$ Thus, $\varphi(a_1) = \varphi(a_2)$ and $\psi(b_1) = \psi(b_2)$. Since φ and ψ are 1-1, we have $a_1 = a_2$ and $b_1 = b_2$, so $(a_1, b_1) = (a_2, b_2).$ Onto: Given $(g, h) \in G \times H$, there exist $a \in A$ and $b \in B$ such that $\varphi(a) = g$ and $\psi(b) = h$, since φ and

Onto: Given $(g,h) \in G \times H$, there exist $a \in A$ and $b \in B$ such that $\varphi(a) = g$ and $\psi(b) = h$, since φ and ψ are onto. Thus, $\Phi((a,b)) = (\varphi(a), \psi(b)) = (g,h)$. QED

Saracino #12.8: Is C_{14} isomorphic to a subgroup of C_{35} ? Of C_{56} ?

Solution. NO, C_{14} is not isomorphic to a subgroup of C_{35}

If it were, then the subgroup H of C_{35} would have $|H| = |C_{14}| = 14$. But $|C_{35}| = 35$ and $14 \nmid 35$, so by Lagrange's Theorem, C_{35} has no subgroup of order 14.

YES, C_{14} is isomorphic to a subgroup of C_{56}

Since $56 = 14 \cdot 4$, note that $H = \langle 4 \rangle$ is a cyclic subgroup of C_{56} , and by an old theorem, its order is 56/(4, 56) = 56/4 = 14. By a recent theorem (Theorem 12.2), since the groups C_{14} and H are both cyclic of order 14, they are isomorphic. QED

Saracino #12.14: Let $\varphi: G \to H$ be an isomorphism. Prove that $Z(G) \cong Z(H)$.

Proof. Define $\psi : Z(G) \to Z(H)$ by $\psi(x) = \varphi(x)$.

Certainly ψ maps Z(G) into H, but we must show it maps in fact into Z(H). To see this, given $x \in Z(G)$, we must show $\psi(x) \in Z(H)$. That is, given $h \in H$, we must show $h\psi(x) = \psi(x)h$. Well, since φ is onto, there is some $g \in G$ such that $h = \varphi(g)$. Thus,

$$h\psi(x) = \varphi(g)\varphi(x) = \varphi(gx) = \varphi(xg) = \varphi(x)\varphi(g) = \psi(x)h$$

as desired, where we have used the various properties and definitions stated above.

Homom: Given $x, y \in Z(G)$, then $xy \in Z(G)$, and $\psi(xy) = \varphi(xy) = \varphi(x)\varphi(y) = \psi(x)\psi(y)$.

1-1: Given $x, y \in Z(G)$ such that $\psi(x) = \psi(y)$, then $\varphi(x) = \varphi(y)$, so x = y because φ is 1-1.

Onto: Given $w \in Z(H)$, we have $w \in H$, so there is some $z \in G$ such that $\varphi(z) = w$, because φ is onto. We claim that $z \in Z(G)$. Indeed, for any $g \in G$, we have

$$arphi(gz)=arphi(g)arphi(z)=arphi(g)w=warphi(g)=arphi(z)arphi(g)=arphi(zg).$$

Therefore, because φ is 1-1, we have gz = zg. Since this holds for all $g \in G$, we have $z \in Z(G)$, proving the claim. Thus, $w = \varphi(z) = \psi(z)$. QED

Saracino #12.20(a): Let G be a finite abelian group, and let n be a positive integer relatively prime to |G|. Let $\varphi: G \to G$ by $\varphi(x) = x^n$. Show that φ is an isomorphism from G to G.

Proof. Let m = |G|. Since (m, n) = 1, there are integers $a, b \in \mathbb{Z}$ such that am + bn = 1.

Homom: Given $x, y \in G$, then $\varphi(xy) = (xy)^n = x^n y^n = \varphi(x)\varphi(y)$.

1-1: Given $x, y \in G$ such that $\varphi(x) = \varphi(y)$, we have $x^n = y^n$. In addition, by Lagrange, we have $x^m = e$ and $y^m = e$. Therefore,

$$x = x^{am+bn} = (x^m)^a (x^n)^b = e^a (x^n)^b = (y^m)^a (y^n)^b = y^{am+bn} = y$$

Onto: We have that φ is a one-to-one function from the finite set G to itself. By the pigeonhole principle, it is also onto. QED