
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #21

1. Saracino, Section 20, Problem 20.1. Let p be a prime. Prove that Fp[X]/⟨X2+1⟩ is a field if and only
if the equation x2 ≡ −1 (mod p) has no solution (modulo p).

Proof. Letf = X2 + 1 ∈ Fp[X].

(=⇒): Since Fp[X]/⟨f⟩ is a field, we have that ⟨f⟩ is a maximal ideal in Fp[X], by Theorem 17.7. By
Theorem 20.2, f is irreducible in Fp[X]. By Theorem 19.8, f has no roots in Fp. That is, there are no
elements x ∈ Fp such that x2 + 1 = 0. Equivalently, there are no solutions in Z to the equation x2 ≡ −1
(mod p).

(⇐=): There are no solutions in Z to the equation x2 ≡ −1 (mod p), and hence there are no elements
x ∈ Fp such that x2 + 1 = 0. Since deg(f) = 2, Theorem 19.8 says that f is irreducible in Fp[X].
Therefore, by Theorem 20.2, ⟨f⟩ is a maximal ideal in Fp[X]. Hence, by Theorem 17.7, Fp[X]/⟨f⟩ is a
field. QED

2. Saracino, Section 20, Problem 20.4. Let K = {0, 1, α, α + 1} be the four-element field constructed in
Example 1 of Section 20 (pages 206–207), where I have written α for the element Saracino denotes X.
Write the polynomial X2 +X + 1 as a product of factors of degree 1 in K[X].

Solution. We have α2 + α+ 1 = 0 in K, so [since −1 = 1 in both F2 and K], we also have α2 + α = 1,
and hence α(α+ 1) = 1.

Thus, X2 +X + 1 = (X + α)(X + α+ 1), and we are done.

“Wait, what?” I hear you cry. Remember, K = F2[X]/I, where I = ⟨X2 + X + 1⟩. So every element
of K is a coset of the form I + f for some f ∈ F2[X]. When we write 0 ∈ K, we mean the coset I + 0;
similarly 1 ∈ K really means the coset I + 1. Meanwhile, α = X ∈ K is shorthand for the coset I +X,
and α+ 1 = X + 1 ∈ K is shorthand for the coset I +X + 1.
In particular, α2 means (I +X)(I +X) = I +X2 = I − (X + 1) = I +X + 1, where the second equality
is by the coset relation (since X2 +X +1 ∈ I), and the third is because −1 = 1 in F2. Thus, α

2 = α+1.
So we have α + (α + 1) = 2α + 1 = 1, and α(α + 1) = α2 + α = (α + 1) + α = 2α + 1 = 1, where we’re
again using the fact that 2 = 0 in F2 and hence also in K. Thus, X2 +X + 1 = (X + α)(X + α+ 1).

3. Saracino, Section 20, variant of Problem 20.7(a). Construct a field of 8 elements.

Solution. Let f = X3 +X + 1 ∈ F2[X]. Then f(0) = 1 ̸= 0 and f(1) = 1 ̸= 0, so f has no roots in F2.
Since f is cubic, Theorem 19.8 says that f is irreducible.

Thus, I = ⟨f⟩ is a maximal ideal in F2[X] (Theorem 20.2). Define K = F2[X]/I, which is a field by
Theorem 17.7. It remains to show that |K| = 8.

We claim that K = {I + a0 + a1X + a2X
2
∣∣ ai ∈ F2}. The reverse inclusion (⊇) is clear. For the forward

inclusion, given I + g ∈ K, by the division algorithm there are polynomials q, r ∈ F2[X] with deg(r) < 3
and g = qf + r. Thus, g − r = qf ∈ I. Meanwhile, we may write r = a0 + a1X + a2X

2 with ai ∈ F2.
Hence, I + g = I + r ∈ RHS, proving the claim.

In addition, if I + a0+ a1X + a2X
2 = I + b0+ b1X + b2X

2, then (a0− b0)+ (a1− b1)X +(a2− b2)X
2 ∈ I

is a multiple of f and hence is of the form qf for some q ∈ F2[X]. If q ̸= 0, then deg q ≥ 0, and hence
deg(qf) ≥ deg f = 3; but the explicit polynomial above is of degree at most 2, giving a contradiction.
Thus, q = 0, and hence the above polynomial is zero, i.e., ai = bi for each i = 0, 1, 2.

Thus, each element of K may be written uniquely as I + a0 + a1X + a2X
2. Hence, K has exactly 23 = 8

elements, since there are two choices for each ai ∈ F2. QED

Note: Instead of X3 +X + 1, we could have instead used the polynomial X3 +X2 + 1 for f . These are
the only two irreducible polynomials of degree 3 in F2[X]. (Can you prove that?)



4. Saracino, Section 20, Problem 20.7(b). Construct a field of 9 elements.

Solution. Let f = X2 + 1 ∈ F3[X]. Then f(0) = 1 ̸= 0 and f(1) = f(2) = 2 ̸= 0, so f has no roots in
F3. Let I = ⟨f⟩ and let K = F3[X]/⟨I⟩. By Problem 1 (Saracino problem 20.1), we have that K is a
field. It remains to show that |K| = 9.

We claim that K = {I + a0 + a1X
∣∣ ai ∈ F3}. The reverse inclusion (⊇) is clear. For the forward

inclusion, given I + g ∈ K, by the division algorithm there are polynomials q, r ∈ F2[X] with deg(r) < 2
and g = qf + r. Thus, g − r = qf ∈ I. Meanwhile, we may write r = a0 + a1X with ai ∈ F3. Hence,
I + g = I + r ∈ RHS, proving the claim.

In addition, if I + a0 + a1X = I + b0 + b1X, then (a0 − b0) + (a1 − b1)X ∈ I is a multiple of f and hence
is of the form qf for some q ∈ F2[X]. If q ̸= 0, then deg q ≥ 0, and hence deg(qf) ≥ deg f = 2; but
the explicit polynomial above is of degree at most 1, giving a contradiction. Thus, q = 0, and hence the
above polynomial is zero, i.e., ai = bi for each i = 0, 1.

Thus, each element of K may be written uniquely as I + a0 + a1X. Hence, K has exactly 32 elements,
since there are three choices for each ai ∈ F3. QED

Note: Instead of X2 + 1, we could have instead used any of the polynomials 2X2 + 2, X2 + X + 2,
2X2 + 2X + 1, X2 + 2X + 2, or 2X2 + 1X + 1 for f . These are the only six irreducible polynomials of
degree 2 in F3[X]. (Can you prove that?)


