Solutions to Homework #21

1. Saracino, Section 20, Problem 20.1. Let p be a prime. Prove that $\mathbb{F}_p[X]/\langle X^2+1\rangle$ is a field if and only if the equation $x^2 \equiv -1 \pmod{p}$ has no solution (modulo p).

Proof. Let $f = X^2 + 1 \in \mathbb{F}_p[X]$.

 (\Longrightarrow) : Since $\mathbb{F}_p[X]/\langle f \rangle$ is a field, we have that $\langle f \rangle$ is a maximal ideal in $\mathbb{F}_p[X]$, by Theorem 17.7. By Theorem 20.2, f is irreducible in $\mathbb{F}_p[X]$. By Theorem 19.8, f has no roots in \mathbb{F}_p . That is, there are no elements $x \in \mathbb{F}_p$ such that $x^2 + 1 = 0$. Equivalently, there are no solutions in \mathbb{Z} to the equation $x^2 \equiv -1 \pmod{p}$.

(\Leftarrow): There are no solutions in \mathbb{Z} to the equation $x^2 \equiv -1 \pmod{p}$, and hence there are no elements $x \in \mathbb{F}_p$ such that $x^2 + 1 = 0$. Since deg(f) = 2, Theorem 19.8 says that f is irreducible in $\mathbb{F}_p[X]$. Therefore, by Theorem 20.2, $\langle f \rangle$ is a maximal ideal in $\mathbb{F}_p[X]$. Hence, by Theorem 17.7, $\mathbb{F}_p[X]/\langle f \rangle$ is a field. QED

2. Saracino, Section 20, Problem 20.4. Let $K = \{0, 1, \alpha, \alpha + 1\}$ be the four-element field constructed in Example 1 of Section 20 (pages 206–207), where I have written α for the element Saracino denotes \overline{X} . Write the polynomial $X^2 + X + 1$ as a product of factors of degree 1 in K[X].

Solution. We have $\alpha^2 + \alpha + 1 = 0$ in K, so [since -1 = 1 in both \mathbb{F}_2 and K], we also have $\alpha^2 + \alpha = 1$, and hence $\alpha(\alpha + 1) = 1$.

Thus, $X^2 + X + 1 = (X + \alpha)(X + \alpha + 1)$, and we are done.

"Wait, what?" I hear you cry. Remember, $K = \mathbb{F}_2[X]/I$, where $I = \langle X^2 + X + 1 \rangle$. So every element of K is a coset of the form I + f for some $f \in \mathbb{F}_2[X]$. When we write $0 \in K$, we mean the coset I + 0; similarly $1 \in K$ really means the coset I + 1. Meanwhile, $\alpha = \overline{X} \in K$ is shorthand for the coset I + X, and $\alpha + 1 = \overline{X} + 1 \in K$ is shorthand for the coset I + X + 1.

In particular, α^2 means $(I + X)(I + X) = I + X^2 = I - (X + 1) = I + X + 1$, where the second equality is by the coset relation (since $X^2 + X + 1 \in I$), and the third is because -1 = 1 in \mathbb{F}_2 . Thus, $\alpha^2 = \alpha + 1$. So we have $\alpha + (\alpha + 1) = 2\alpha + 1 = 1$, and $\alpha(\alpha + 1) = \alpha^2 + \alpha = (\alpha + 1) + \alpha = 2\alpha + 1 = 1$, where we're again using the fact that 2 = 0 in \mathbb{F}_2 and hence also in K. Thus, $X^2 + X + 1 = (X + \alpha)(X + \alpha + 1)$.

3. Saracino, Section 20, variant of Problem 20.7(a). Construct a field of 8 elements.

Solution. Let $f = X^3 + X + 1 \in \mathbb{F}_2[X]$. Then $f(0) = 1 \neq 0$ and $f(1) = 1 \neq 0$, so f has no roots in \mathbb{F}_2 . Since f is cubic, Theorem 19.8 says that f is irreducible.

Thus, $I = \langle f \rangle$ is a maximal ideal in $\mathbb{F}_2[X]$ (Theorem 20.2). Define $K = \mathbb{F}_2[X]/I$, which is a field by Theorem 17.7. It remains to show that |K| = 8.

We claim that $K = \{I + a_0 + a_1X + a_2X^2 \mid a_i \in \mathbb{F}_2\}$. The reverse inclusion (\supseteq) is clear. For the forward inclusion, given $I + g \in K$, by the division algorithm there are polynomials $q, r \in \mathbb{F}_2[X]$ with $\deg(r) < 3$ and g = qf + r. Thus, $g - r = qf \in I$. Meanwhile, we may write $r = a_0 + a_1X + a_2X^2$ with $a_i \in \mathbb{F}_2$. Hence, $I + g = I + r \in \text{RHS}$, proving the claim.

In addition, if $I + a_0 + a_1X + a_2X^2 = I + b_0 + b_1X + b_2X^2$, then $(a_0 - b_0) + (a_1 - b_1)X + (a_2 - b_2)X^2 \in I$ is a multiple of f and hence is of the form qf for some $q \in \mathbb{F}_2[X]$. If $q \neq 0$, then deg $q \geq 0$, and hence deg $(qf) \geq \deg f = 3$; but the explicit polynomial above is of degree at most 2, giving a contradiction. Thus, q = 0, and hence the above polynomial is zero, i.e., $a_i = b_i$ for each i = 0, 1, 2.

Thus, each element of K may be written *uniquely* as $I + a_0 + a_1 X + a_2 X^2$. Hence, K has exactly $2^3 = 8$ elements, since there are two choices for each $a_i \in \mathbb{F}_2$. QED

Note: Instead of $X^3 + X + 1$, we could have instead used the polynomial $X^3 + X^2 + 1$ for f. These are the only two irreducible polynomials of degree 3 in $\mathbb{F}_2[X]$. (Can you prove that?)

4. Saracino, Section 20, Problem 20.7(b). Construct a field of 9 elements.

Solution. Let $f = X^2 + 1 \in \mathbb{F}_3[X]$. Then $f(0) = 1 \neq 0$ and $f(1) = f(2) = 2 \neq 0$, so f has no roots in \mathbb{F}_3 . Let $I = \langle f \rangle$ and let $K = \mathbb{F}_3[X]/\langle I \rangle$. By Problem 1 (Saracino problem 20.1), we have that K is a field. It remains to show that |K| = 9.

We claim that $K = \{I + a_0 + a_1X \mid a_i \in \mathbb{F}_3\}$. The reverse inclusion (\supseteq) is clear. For the forward inclusion, given $I + g \in K$, by the division algorithm there are polynomials $q, r \in \mathbb{F}_2[X]$ with $\deg(r) < 2$ and g = qf + r. Thus, $g - r = qf \in I$. Meanwhile, we may write $r = a_0 + a_1X$ with $a_i \in \mathbb{F}_3$. Hence, $I + g = I + r \in \text{RHS}$, proving the claim.

In addition, if $I + a_0 + a_1 X = I + b_0 + b_1 X$, then $(a_0 - b_0) + (a_1 - b_1) X \in I$ is a multiple of f and hence is of the form qf for some $q \in \mathbb{F}_2[X]$. If $q \neq 0$, then $\deg q \geq 0$, and hence $\deg(qf) \geq \deg f = 2$; but the explicit polynomial above is of degree at most 1, giving a contradiction. Thus, q = 0, and hence the above polynomial is zero, i.e., $a_i = b_i$ for each i = 0, 1.

Thus, each element of K may be written *uniquely* as $I + a_0 + a_1 X$. Hence, K has exactly 3^2 elements, since there are three choices for each $a_i \in \mathbb{F}_3$. QED

Note: Instead of $X^2 + 1$, we could have instead used any of the polynomials $2X^2 + 2$, $X^2 + X + 2$, $2X^2 + 2X + 1$, $X^2 + 2X + 2$, or $2X^2 + 1X + 1$ for f. These are the only six irreducible polynomials of degree 2 in $\mathbb{F}_3[X]$. (Can you prove that?)