
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #20

1. Saracino, Section 19, Problem 19.2(a,b,c):
For each of the following polynomials, determine whether or not they are irreducible in Q[X].

(a) X3 +X + 36 (b) 2X3 − 8X2 − 6X + 20 (c) 2X4 + 3X3 + 15X + 6

Solutions. (a) Since f = X3+X +36 ∈ Z[X], we may apply Exercise 19.1, to see that the only possible
roots in Q are ±1,±2,±3,±4,±6,±9,±12,±18,±36. However, f(a) > 36 > 0 for any a > 0, so we can
discard all the positive numbers in that list. In addition, for a ≤ −4, we have f(a) ≤ (−4)3 − 4 + 36 =
−32 < 0, so f(a) ̸= 0. The only remaining numbers to test are −1,−2,−3. We check f(−1) = 34 ̸= 0,
f(−2) = 26 ̸= 0, and f(−3) = 6 ̸= 0, so f has no roots in Q. Since deg f = 3, it follows by Theorem 19.8
that f is irreducible in Q[X].

(b) Note that g = 2X3 − 8X2 − 6X + 20 can be written as g = 2h, for h = X3 − 4X2 − 3X + 10. Since
h ∈ Z[X], we may again apply Exercise 19.1, showing that the only possible rational roots of h are ±1,
±2, ±5, ±10.
We check h(1) = 4 ̸= 0, h(−1) = 8 ̸= 0, h(2) = −4 ̸= 0, h(−2) = −8 ̸= 0, h(5) = 20 ̸= 0, h(−5) <
−125 < 0, h(10) > 600 > 0, and h(−10) < −1000 < 0. Thus, h has no roots in Q; g also has no roots in
Q, since h = (1/2)g. Thus, by Theorem 19.8, g is irreducible in Q[X].

[Alternately: reducing mod 3, we have ḡ = 2X3 +X2 + 2 ∈ F3[X], and a quick check shows ḡ(a) ̸= 0 (in
F3) for a = 0, 1, 2 ∈ F3. So ḡ is irreducible in F3[X] by Theorem 19.8. So g is irreducible in Q[X], by
Theorem 19.12.]

(c) Apply Eisenstein’s Criterion with p = 3. The lead coefficient is not divisible by p, whereas all the
other coefficients are; and the constant coefficient is not divisible by p2. So Eisenstein says the polynomial
is irreducible in Q[X].

2. Saracino, Section 19, Problem 19.3(a,d):
Write each of the following polynomials as a product of irreducible polynomials over the given field.

(a) 2X3 +X2 + 2 over F3 (d) X4 +X3 + 2X2 +X + 2 over F3

Solutions. (a) Plugging in X = 0, 1, 2 gives the values 2, 2, 1 ∈ F3, respectively. Thus, the cubic
polynomial has no roots in F3 and hence is itself irreducible. So it is already written as a product of a
(single) irreducible polynomial.

(b) Call this polynmial f(X). Checking shows f(2) = 1 − 1 − 1 + 2 + 2 = 0 in F3, so X = 2 = −1 is a
root, and hence X +1 is a factor. Doing long division of polynomials shows f(X) = (X +1)g(X), where
g(X) = X3 + 2X + 2. We check g(0) = 2 ̸= 0, g(1) = 2 ̸= 0, and g(2) = 2 ̸= 0, so g has no roots in F3.
Thus, since g is cubic, g is irreducible in F3[X]. So the desired product of irreducibles is (X + 1)g(X).

3. Saracino, Section 19, Problem 19.12:
Let R be a commutative ring, let r ∈ R, and let f, g ∈ R[X]. Define h = f + g and k = fg. Prove that

h(r) = f(r) + g(r) and k(r) = f(r)g(r).

Proof. Given f, g, r as above, write f =
∑

aiX
i and g =

∑
biX

i with both sums for i ≥ 0, with

ai, bi ∈ R, and with only finitely many coefficients nonzero. Then

(f + g)(r) =
∑
i≥0

(ai + bi)r
i =

∑
i≥0

(air
i + bir

i) =
∑
i≥0

(air
i) +

∑
i≥0

(bir
i) = f(r) + g(r),

where the second equality is by the distributive law in R, and the third is by the commutativity of +.



Multiplication is a bit more complicated:

(fg)(r) =
∑
k≥0

( k∑
i=0

aibk−i

)
rk =

∑
i≥0

∑
k≥i

aibk−ir
k =

∑
i≥0

∑
j≥0

aibjr
i+j =

∑
i≥0

∑
j≥0

(air
i)(bjr

j)

=
∑
i≥0

(air
i)
∑
j≥0

(bjr
j) = f(r)g(r),

where we switched the order of summation of 0 ≤ i ≤ k in the second inequality, re-indexed via j = k− i
in the third, used commutativity of multiplication in R in the fourth, and used distributivity in R in the
fifth. QED

4. Saracino, Section 19, Problem 19.17:
Let F be a field. For f(X) = a0 + a1X + · · ·+ anX

n ∈ F [X], define the formal derivative f ′(X) by

f ′(X) = a1 + 2a2X + 3a3X
2 + · · ·+ nanX

n−1.

(a) For f, g ∈ F [X], define h = f + g. Prove that h′(X) = f ′(X) + g′(X)

(b) For f, g ∈ F [X], define k = fg. Prove that k′(X) = f(X)g′(X) + f ′(X)g(X)

(c) Let n ≥ 1 be a positive integer. Prove that the formal derivative of [f(X)]n is
n[f(X)]n−1 · f ′(X)

Proof. Given f, g ∈ F [X], write f =
∑

aiX
i and g =

∑
biX

i. We’ll denote the formal derivative of an
expression with d

dx .

(a): (f + g)′ =
d

dx

[∑
i≥0

(ai + bi)X
i
]
=

∑
i≥0

(i+ 1)(ai+1 + bi+1)X
i

=
∑
i≥0

(i+ 1)ai+1X
i +

∑
i≥0

(i+ 1)bi+1X
i = f ′ + g′.

(b): (fg)′ =
d

dx

[∑
k≥0

( k∑
i=0

aibk−i

)
Xk

]
=

∑
k≥0

(k + 1)
( k+1∑

i=0

aibk+1−i

)
Xk =

∑
k≥0

( k+1∑
i=0

(k + 1)aibk+1−i

)
Xk

=
∑
k≥0

( k+1∑
i=1

iaibk+1−i

)
Xk +

∑
k≥0

( k∑
i=0

(k − i+ 1)aibk−i+1

)
Xk

=
∑
k≥0

( k∑
i=0

(i+1)ai+1bk−i

)
Xk+

∑
k≥0

( k∑
i=0

(k− i+1)aibk−i+1

)
Xk = f ′g+g′f , where in the last equality,

we re-indexed the first sum.

(c): We proceed by induction on n ≥ 1. For n = 1, we have (f1)′ = f ′ = 1f0f ′, as desired.
Assuming the statement is true for a particular n ≥ 1, we have
(fn+1)′ = (fnf)′ = (fn)′f + fnf ′ = (nfn−1f ′)f + fnf ′ = nfnf ′ + fnf ′ = (n+ 1)fnf ′,
where the second equality is by part (b). This proves the statement for n+1 and completes the induction.
QED


