Math 350, Spring 2025 Professor Rob Benedetto
Solutions to Homework #19

1. Saracino, Section 18, Problem 18.6:

Prove that the ring R = {a + bv/2|a,b € Z} has precisely two automorphisms.

Proof. Define f; : R — R by fi(a+bv2) =a+bv/2and fo: R — Rby fa(a+bv2) =a—bV2.
Claim 1. Both f; and fy are automorphisms.

Proof of Claim 1. This is clear for fq, because it is the identity function, and hence f; is bijective, and
for any z,y € R, we have fi(z +y) =z +y = fi(z) + fi(y) and fi(zy) = 2y = f1(x) f1(y).

As for f5, observe first that fs o fo is the identity function on R, and hence f is its own inverse.
Being invertible, fo is bijective. To finish the proof of the claim, it remains to show that fy is a ring

homomorphism.
Given z,y € R, write x = a + bv/2 and y = ¢ + dv/2, with a,b € Z. Then

folx+y) = follatc)+ b+ d)V2) = (a+c) = (b+d)V2 = (a—bV2) + (c — dV2) = fo(z) + fa(y),
and

fa(zy) = f2((ac + 2bd) + (ad + bc)\@) = (ac 4+ 2bd) — (ad + bc)V2 = (a — bV2)(c — dV2) = fo(x) fo(y).
QED Claim 1

Moreover, since fl(ﬂ) =V2# V2= fg(\/i), we have f1 # fo. Thus, we have found two automor-
phisms of R; it suffices to show these are the only two.

Given an automorphism ¢ of R, define w = ¢(1/2).
Claim 2. For any a,b € Z, we have p(a + bv/2) = a + bw.
Proof of Claim 2. We have ¢(1) = 1 because ¢ is onto, by Theorem 18.2(i). For any a,b € Z,
Theorem 18.1(ii) gives
ola) =p(a-1) =ap(l) =a-1=a, and ¢(bv/2) = bp(v/2) = bw.
Thus, because ¢ is a homomorphism, we have p(a + bv/2) = a + bw. QED Claim 2
By Claim 2 with a = 2 and b = 0, we have ¢(2) = 2. Therefore, since ¢ is a homomorphism, we have
w? = o(v2)? = p(V2 - V2) = ¢(2) = 2.
Since R C R, and the only real numbers whose square is 2 are +v/2, we have w = v/2 or w = —v/2.
If w = /2, then by Claim 2, we have ¢(x) = x for all € R, and therefore ¢ = f;. Otherwise, we have

w = —/2, and hence for any a,b € Z, we have ola+ b\/i) = a — by/2, and therefore ¢ = fo, as desired.
QED

2. Saracino, Section 18, Problem 18.15:
Let ¢ : R — S be a (ring) homomorphism. Prove that ¢ is one-to-one if and only if ker ¢ = {0g}.

Proof 1. (=) (C): Given z € ker ¢, we have p(x) = 0g. However, we also have p(0r) = 0g, because ¢
is a homomorphism. Therefore, because ¢ is one-to-one, we have x = Op, as desired.

(2): Since ¢ is a homomorphism, we have ¢(0r) = 0Og, so that Or € ker ¢, as desired. QED (=)
(<) Given z,y € R with p(z) = ¢(y), we have

p(x —y) = p(x) - »(y) = O,
and hence © — y € ker ¢, and therefore z — y = Or. That is, z = y. QED

Proof 2. Considering (R, +) and (S, +) as groups under addition, and ¢ as a group homomorphism, the
ring definition of ker ¢ coincides with our old group definition of ker ¢.

By Theorem 13.1 [the proof of which was a prior homework problem| applied to this group homomorphism,
we have that ¢ is one-to-one if and only if ker ¢ = {Or}. QED

3. Saracino, Section 18, Problem 18.22(a):



Let ¢ : R — S be a (ring) homomorphism, and let J be a prime ideal of S. If p=1(J) # R, prove that
@~ 1(J) is a prime ideal of R.
Proof. (Nonempty): We have ¢(0g) = 0s € J, and hence 0r € o~ 1(J).
(Closed): Given x,y € = 1(J), we have ¢(z), ¢(y) € J, and hence
p(r —y) = p(z) —py) € J,

sox—y € (J).
(Sticky): Given z € ¢~ 1(J) and r € R, we have ¢(z) € J, and hence

p(rz) = p(r)p(z) € J and  ¢(zr) = p(x)p(r) € J,
and so rz,zr € ¢ 1(J).
(Prime): By hypothesis, we already know that ¢~ !(.J) # R.

Given a,b € R with ab € ¢—1(J), we have ¢(a)¢(b) = ¢(ab) € J, and hence either ¢(a) € J or ¢(b) € J,
since J is prime. Thus, either a € ¢~1(J) or b € ¢~ 1(J). QED

4. Saracino, Section 18, Problem 18.28:

In the proof of Theorem 18.10, we had an integral domain D and a set F' called the field of fractions of
D. Prove that the operations + and - defined on F' in that proof are well-defined.

Proof. Given al,bl,CLQ,bQ,Cl,Cg,dl,dg € D with bl,bg,dl,dg 7& 0 and (al,bl) = (a2,b2) and (Cl,dl) =
(62, dg), we have a1b2 = agbl and Cldg = ngl.

Therefore,
(bldl)(agdg + bQCQ) = (agbl)(dldz) + (blbg)(Cle) = (albg)(chdg) + (blbg)(cldg) = (bgdg)(aldl + blcl),
and hence

(a1,01) + (c1,d1) = (a1dy + bic1, bidy) = (agda + baca, bada) = (ag,b2) + (c2, d2),
proving that + is well-defined. Similarly,

(bidy)(azc2) = (a2b1)(cadr) = (a1b2)(c1d2) = (badz)(arc1),
and hence

(a1,b1) - (c1,d1) = (arc1,bidy) = (agcz, bad) = (ag, b2) - (c2,d2),
proving that - is well-defined. QED

5. Saracino, Section 19, Problem 19.1:
Let f(X)=ao+ a1 X+ -+ a, X" € Z[X]. Suppose m/n € Q, with (m,n) = 1. If m/n is a root of f,
prove that m|ag and nla,.

Proof. We have 0 = f(m/n) = ag + aymn™' 4+ asm?n=2 + ... + a,m"n~". Multiplying by n", then,
aon” + aymn” '+ agm?*n" 2 + -+ a,m” = 0.
In particular,

2

aon’ = m( —an"t—agmn 2 — .. — aTm’”_l),

and hence m|(agn”), since the expression in parenthesis is an integer. Since (m,n) = 1, repeated appli-
cation of Theorem 4.3 shows that m|ag, as desired.
Similarly, we also have
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a,m’ = n( —aon’ " —aymn” T — - — aT,lmr_l),

and hence n|(a,m"). Again because (m,n) = 1, it follows that n|a,. QED



