Solutions to Homework #19

1. Saracino, Section 18, Problem 18.6:

Prove that the ring $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ has precisely two automorphisms.

Proof. Define $f_1: R \to R$ by $f_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $f_2: R \to R$ by $f_2(a + b\sqrt{2}) = a - b\sqrt{2}$.

Claim 1. Both f_1 and f_2 are automorphisms.

Proof of Claim 1. This is clear for f_1 , because it is the identity function, and hence f_1 is bijective, and for any $x, y \in R$, we have $f_1(x + y) = x + y = f_1(x) + f_1(y)$ and $f_1(xy) = xy = f_1(x)f_1(y)$.

As for f_2 , observe first that $f_2 \circ f_2$ is the identity function on R, and hence f_2 is its own inverse. Being invertible, f_2 is bijective. To finish the proof of the claim, it remains to show that f_2 is a ring homomorphism.

Given $x, y \in R$, write $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$, with $a, b \in \mathbb{Z}$. Then

 $f_2(x+y) = f_2((a+c) + (b+d)\sqrt{2}) = (a+c) - (b+d)\sqrt{2} = (a-b\sqrt{2}) + (c-d\sqrt{2}) = f_2(x) + f_2(y),$ and

 $f_2(xy) = f_2((ac+2bd) + (ad+bc)\sqrt{2}) = (ac+2bd) - (ad+bc)\sqrt{2} = (a-b\sqrt{2})(c-d\sqrt{2}) = f_2(x)f_2(y).$ QED Claim 1

Moreover, since $f_1(\sqrt{2}) = \sqrt{2} \neq -\sqrt{2} = f_2(\sqrt{2})$, we have $f_1 \neq f_2$. Thus, we have found two automorphisms of R; it suffices to show these are the only two.

Given an automorphism φ of R, define $w = \varphi(\sqrt{2})$.

Claim 2. For any $a, b \in \mathbb{Z}$, we have $\varphi(a + b\sqrt{2}) = a + bw$.

Proof of Claim 2. We have $\varphi(1) = 1$ because φ is onto, by Theorem 18.2(i). For any $a, b \in \mathbb{Z}$, Theorem 18.1(ii) gives

$$\varphi(a) = \varphi(a \cdot 1) = a\varphi(1) = a \cdot 1 = a$$
, and $\varphi(b\sqrt{2}) = b\varphi(\sqrt{2}) = bw$.

Thus, because φ is a homomorphism, we have $\varphi(a + b\sqrt{2}) = a + bw$. QED Claim 2 By Claim 2 with a = 2 and b = 0, we have $\varphi(2) = 2$. Therefore, since φ is a homomorphism, we have $w^2 = \varphi(\sqrt{2})^2 = \varphi(\sqrt{2} \cdot \sqrt{2}) = \varphi(2) = 2$.

Since $R \subseteq \mathbb{R}$, and the only real numbers whose square is 2 are $\pm\sqrt{2}$, we have $w = \sqrt{2}$ or $w = -\sqrt{2}$. If $w = \sqrt{2}$, then by Claim 2, we have $\varphi(x) = x$ for all $x \in R$, and therefore $\varphi = f_1$. Otherwise, we have $w = -\sqrt{2}$, and hence for any $a, b \in \mathbb{Z}$, we have $\varphi(a + b\sqrt{2}) = a - b\sqrt{2}$, and therefore $\varphi = f_2$, as desired. QED

2. Saracino, Section 18, Problem 18.15:

Let $\varphi : R \to S$ be a (ring) homomorphism. Prove that φ is one-to-one if and only if ker $\varphi = \{0_R\}$.

Proof 1. (\Rightarrow) (\subseteq) : Given $x \in \ker \varphi$, we have $\varphi(x) = 0_S$. However, we also have $\varphi(0_R) = 0_S$, because φ is a homomorphism. Therefore, because φ is one-to-one, we have $x = 0_R$, as desired.

(⊇): Since φ is a homomorphism, we have $\varphi(0_R) = 0_S$, so that $0_R \in \ker \varphi$, as desired. QED (⇒)

 (\Leftarrow) Given $x, y \in R$ with $\varphi(x) = \varphi(y)$, we have

$$\varphi(x - y) = \varphi(x) - \varphi(y) = 0_S,$$

ore $x - y = 0_B$. That is, $x = y$. QED

and hence $x - y \in \ker \varphi$, and therefore $x - y = 0_R$. That is, x = y.

Proof 2. Considering (R, +) and (S, +) as groups under addition, and φ as a group homomorphism, the ring definition of ker φ coincides with our old group definition of ker φ .

By Theorem 13.1 [the proof of which was a prior homework problem] applied to this group homomorphism, we have that φ is one-to-one if and only if ker $\varphi = \{0_R\}$. QED

Let $\varphi : R \to S$ be a (ring) homomorphism, and let J be a prime ideal of S. If $\varphi^{-1}(J) \neq R$, prove that $\varphi^{-1}(J)$ is a prime ideal of R.

Proof. (Nonempty): We have $\varphi(0_R) = 0_S \in J$, and hence $0_R \in \varphi^{-1}(J)$. (Closed): Given $x, y \in \varphi^{-1}(J)$, we have $\varphi(x), \varphi(y) \in J$, and hence

$$\varphi(x-y) = \varphi(x) - \varphi(y) \in J$$

so $x - y \in \varphi^{-1}(J)$.

(Sticky): Given $x \in \varphi^{-1}(J)$ and $r \in R$, we have $\varphi(x) \in J$, and hence

$$\varphi(rx) = \varphi(r)\varphi(x) \in J \text{ and } \varphi(xr) = \varphi(x)\varphi(r) \in J,$$

and so $rx, xr \in \varphi^{-1}(J)$.

(**Prime**): By hypothesis, we already know that $\varphi^{-1}(J) \neq R$.

Given $a, b \in R$ with $ab \in \phi^{-1}(J)$, we have $\phi(a)\phi(b) = \phi(ab) \in J$, and hence either $\phi(a) \in J$ or $\phi(b) \in J$, since J is prime. Thus, either $a \in \phi^{-1}(J)$ or $b \in \phi^{-1}(J)$. QED

4. Saracino, Section 18, Problem 18.28:

In the proof of Theorem 18.10, we had an integral domain D and a set F called the field of fractions of D. Prove that the operations + and \cdot defined on F in that proof are well-defined.

Proof. Given $a_1, b_1, a_2, b_2, c_1, c_2, d_1, d_2 \in D$ with $b_1, b_2, d_1, d_2 \neq 0$ and $\overline{(a_1, b_1)} = \overline{(a_2, b_2)}$ and $\overline{(c_1, d_1)} = \overline{(c_2, d_2)}$, we have $a_1b_2 = a_2b_1$ and $c_1d_2 = c_2d_1$.

Therefore,

 $(b_1d_1)(a_2d_2 + b_2c_2) = (a_2b_1)(d_1d_2) + (b_1b_2)(c_2d_1) = (a_1b_2)(d_1d_2) + (b_1b_2)(c_1d_2) = (b_2d_2)(a_1d_1 + b_1c_1),$ and hence

$$\overline{(a_1,b_1)} + \overline{(c_1,d_1)} = \overline{(a_1d_1 + b_1c_1, b_1d_1)} = \overline{(a_2d_2 + b_2c_2, b_2d_2)} = \overline{(a_2,b_2)} + \overline{(c_2,d_2)},$$

proving that + is well-defined. Similarly,

$$(b_1d_1)(a_2c_2) = (a_2b_1)(c_2d_1) = (a_1b_2)(c_1d_2) = (b_2d_2)(a_1c_1),$$

and hence

$$\overline{a_1, b_1} \cdot \overline{(c_1, d_1)} = \overline{(a_1c_1, b_1d_1)} = \overline{(a_2c_2, b_2d_2)} = \overline{(a_2, b_2)} \cdot \overline{(c_2, d_2)},$$

QED

QED

proving that \cdot is well-defined.

Let $f(X) = a_0 + a_1 X + \cdots + a_r X^r \in \mathbb{Z}[X]$. Suppose $m/n \in \mathbb{Q}$, with (m, n) = 1. If m/n is a root of f, prove that $m|a_0$ and $n|a_r$.

Proof. We have
$$0 = f(m/n) = a_0 + a_1 m n^{-1} + a_2 m^2 n^{-2} + \ldots + a_r m^r n^{-r}$$
. Multiplying by n^r , then,
 $a_0 n^r + a_1 m n^{r-1} + a_2 m^2 n^{r-2} + \cdots + a_r m^r = 0.$

In particular,

$$a_0 n^r = m (-a_1 n^{r-1} - a_2 m n^{r-2} - \dots - a_r m^{r-1})$$

and hence $m|(a_0n^r)$, since the expression in parenthesis is an integer. Since (m, n) = 1, repeated application of Theorem 4.3 shows that $m|a_0$, as desired.

Similarly, we also have

$$a_r m^r = n(-a_0 n^{r-1} - a_1 m n^{r-2} - \dots - a_{r-1} m^{r-1}),$$

and hence $n|(a_rm^r)$. Again because (m, n) = 1, it follows that $n|a_r$.