
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #19

1. Saracino, Section 18, Problem 18.6:
Prove that the ring R = {a+ b

√
2 | a, b ∈ Z} has precisely two automorphisms.

Proof. Define f1 : R → R by f1(a+ b
√
2) = a+ b

√
2 and f2 : R → R by f2(a+ b

√
2) = a− b

√
2.

Claim 1. Both f1 and f2 are automorphisms.

Proof of Claim 1. This is clear for f1, because it is the identity function, and hence f1 is bijective, and
for any x, y ∈ R, we have f1(x+ y) = x+ y = f1(x) + f1(y) and f1(xy) = xy = f1(x)f1(y).
As for f2, observe first that f2 ◦ f2 is the identity function on R, and hence f2 is its own inverse.
Being invertible, f2 is bijective. To finish the proof of the claim, it remains to show that f2 is a ring
homomorphism.
Given x, y ∈ R, write x = a+ b

√
2 and y = c+ d

√
2, with a, b ∈ Z. Then

f2(x+ y) = f2
(
(a+ c) + (b+ d)

√
2
)
= (a+ c)− (b+ d)

√
2 = (a− b

√
2) + (c− d

√
2) = f2(x) + f2(y),

and

f2(xy) = f2
(
(ac+ 2bd) + (ad+ bc)

√
2
)
= (ac+ 2bd)− (ad+ bc)

√
2 = (a− b

√
2)(c− d

√
2) = f2(x)f2(y).

QED Claim 1

Moreover, since f1(
√
2) =

√
2 ̸= −

√
2 = f2(

√
2), we have f1 ̸= f2. Thus, we have found two automor-

phisms of R; it suffices to show these are the only two.

Given an automorphism φ of R, define w = φ(
√
2).

Claim 2. For any a, b ∈ Z, we have φ(a+ b
√
2) = a+ bw.

Proof of Claim 2. We have φ(1) = 1 because φ is onto, by Theorem 18.2(i). For any a, b ∈ Z,
Theorem 18.1(ii) gives

φ(a) = φ(a · 1) = aφ(1) = a · 1 = a, and φ(b
√
2) = bφ(

√
2) = bw.

Thus, because φ is a homomorphism, we have φ(a+ b
√
2) = a+ bw. QED Claim 2

By Claim 2 with a = 2 and b = 0, we have φ(2) = 2. Therefore, since φ is a homomorphism, we have

w2 = φ(
√
2)2 = φ(

√
2 ·

√
2) = φ(2) = 2.

Since R ⊆ R, and the only real numbers whose square is 2 are ±
√
2, we have w =

√
2 or w = −

√
2.

If w =
√
2, then by Claim 2, we have φ(x) = x for all x ∈ R, and therefore φ = f1. Otherwise, we have

w = −
√
2, and hence for any a, b ∈ Z, we have φ(a+ b

√
2) = a− b

√
2, and therefore φ = f2, as desired.

QED

2. Saracino, Section 18, Problem 18.15:
Let φ : R → S be a (ring) homomorphism. Prove that φ is one-to-one if and only if kerφ = {0R}.
Proof 1. (⇒) (⊆): Given x ∈ kerφ, we have φ(x) = 0S . However, we also have φ(0R) = 0S , because φ
is a homomorphism. Therefore, because φ is one-to-one, we have x = 0R, as desired.

(⊇): Since φ is a homomorphism, we have φ(0R) = 0S , so that 0R ∈ kerφ, as desired. QED (⇒)

(⇐) Given x, y ∈ R with φ(x) = φ(y), we have

φ(x− y) = φ(x)− φ(y) = 0S ,

and hence x− y ∈ kerφ, and therefore x− y = 0R. That is, x = y. QED

Proof 2. Considering (R,+) and (S,+) as groups under addition, and φ as a group homomorphism, the
ring definition of kerφ coincides with our old group definition of kerφ.
By Theorem 13.1 [the proof of which was a prior homework problem] applied to this group homomorphism,
we have that φ is one-to-one if and only if kerφ = {0R}. QED

3. Saracino, Section 18, Problem 18.22(a):



Let φ : R → S be a (ring) homomorphism, and let J be a prime ideal of S. If φ−1(J) ̸= R, prove that
φ−1(J) is a prime ideal of R.

Proof. (Nonempty): We have φ(0R) = 0S ∈ J , and hence 0R ∈ φ−1(J).

(Closed): Given x, y ∈ φ−1(J), we have φ(x), φ(y) ∈ J , and hence

φ(x− y) = φ(x)− φ(y) ∈ J ,

so x− y ∈ φ−1(J).

(Sticky): Given x ∈ φ−1(J) and r ∈ R, we have φ(x) ∈ J , and hence

φ(rx) = φ(r)φ(x) ∈ J and φ(xr) = φ(x)φ(r) ∈ J ,

and so rx, xr ∈ φ−1(J).

(Prime): By hypothesis, we already know that φ−1(J) ̸= R.

Given a, b ∈ R with ab ∈ ϕ−1(J), we have ϕ(a)ϕ(b) = ϕ(ab) ∈ J , and hence either ϕ(a) ∈ J or ϕ(b) ∈ J ,
since J is prime. Thus, either a ∈ ϕ−1(J) or b ∈ ϕ−1(J). QED

4. Saracino, Section 18, Problem 18.28:
In the proof of Theorem 18.10, we had an integral domain D and a set F called the field of fractions of
D. Prove that the operations + and · defined on F in that proof are well-defined.

Proof. Given a1, b1, a2, b2, c1, c2, d1, d2 ∈ D with b1, b2, d1, d2 ̸= 0 and (a1, b1) = (a2, b2) and (c1, d1) =
(c2, d2), we have a1b2 = a2b1 and c1d2 = c2d1.

Therefore,

(b1d1)(a2d2 + b2c2) = (a2b1)(d1d2) + (b1b2)(c2d1) = (a1b2)(d1d2) + (b1b2)(c1d2) = (b2d2)(a1d1 + b1c1),

and hence

(a1, b1) + (c1, d1) = (a1d1 + b1c1, b1d1) = (a2d2 + b2c2, b2d2) = (a2, b2) + (c2, d2),

proving that + is well-defined. Similarly,

(b1d1)(a2c2) = (a2b1)(c2d1) = (a1b2)(c1d2) = (b2d2)(a1c1),

and hence

(a1, b1) · (c1, d1) = (a1c1, b1d1) = (a2c2, b2d2) = (a2, b2) · (c2, d2),
proving that · is well-defined. QED

5. Saracino, Section 19, Problem 19.1:
Let f(X) = a0 + a1X + · · · + arX

r ∈ Z[X]. Suppose m/n ∈ Q, with (m,n) = 1. If m/n is a root of f ,
prove that m|a0 and n|ar.
Proof. We have 0 = f(m/n) = a0 + a1mn−1 + a2m

2n−2 + . . .+ arm
rn−r. Multiplying by nr, then,

a0n
r + a1mnr−1 + a2m

2nr−2 + · · ·+ arm
r = 0.

In particular,

a0n
r = m

(
− a1n

r−1 − a2mnr−2 − · · · − arm
r−1

)
,

and hence m|(a0nr), since the expression in parenthesis is an integer. Since (m,n) = 1, repeated appli-
cation of Theorem 4.3 shows that m|a0, as desired.
Similarly, we also have

arm
r = n

(
− a0n

r−1 − a1mnr−2 − · · · − ar−1m
r−1

)
,

and hence n|(armr). Again because (m,n) = 1, it follows that n|ar. QED


