Solutions to Homework #18

1. Saracino, Section 17, Problem 17.9:

Let $R = \{q \in \mathbb{Q} \mid q = a/b \text{ with } a, b \in \mathbb{Z} \text{ and } b \text{ is odd}\}$. Prove that R has a unique maximal ideal.

Proof. Let $I = \langle 2 \rangle = \{2a/b \mid a, b \in \mathbb{Z} \text{ with } b \text{ odd}\}$. We will show that I is the unique maximal ideal.

Ideal: Since R is a commutative ring, any principal ideal is actually an ideal. [Alternately, you can prove from scratch that I is nonempty, is closed under + and -, and satisfies the ideal property.]

Maximal: Note that $I \neq R$ since $1/1 \in R \setminus I$. That is, I is a proper ideal.

Given an ideal J with $I \subsetneq J \subseteq R$, there is some $x \in J \setminus I$. Write x = a/b with $a, b \in \mathbb{Z}$ and b odd; by definition of I, we must have a odd, since $x \notin I$. Thus, $x^{-1} = b/a \in R$.

Hence, given any $y \in R$, we have $y = (yx^{-1})x \in J$ since $yx^{-1} \in R$ and $x \in J$. Thus, $R \subseteq J$ and hence J = R, proving that I is maximal.

Unique. Suppose there were some maximal ideal $J \subsetneq R$ with $J \neq I$. If $J \subseteq I$, then $J \subsetneq I \subseteq R$, contradicting the maximality of J. Thus, $J \not\subseteq I$, and hence there is some $x \in J \setminus I$.

We now follow the exact same argument as above: given any $y \in R$, we have $y = (yx^{-1})x \in J$ since $yx^{-1} \in R$ and $x \in J$. Thus, $R \subseteq J$ and hence J = R, contradicting the fact that J is maximal and therefore proper. By this contradiction, I is indeed unique as a maximal ideal. QED

2. Saracino, Section 17, Problem 17.13:

Let I be an ideal of a ring R. Prove that the distributive laws hold in R/I.

Proof. Given $I + x, I + y, I + z \in R/I$, with $x, y, z \in R$, we have

$$(I+x)((I+y) + (I+z)) = (I+x)(I+(y+z)) = I + x(y+z) = I + (xy+xz)$$
$$= (I+xy) + (I+xz) = (I+x)(I+y) + (I+x)(I+z)$$

and

$$((I+y) + (I+z))(I+x) = (I + (y+z))(I+x) = I + (y+z)x = I + (yx+zx) = (I+yx) + (I+zx) = (I+y)(I+x) + (I+z)(I+x)$$
QED

3. Saracino, Section 17, Problem 17.14:

Let R be a ring and I an ideal of R.

(a) If R is commutative, prove that R/I is commutative.

(b) If R has unity, prove that R/I has unity.

Proof. (a) Given I + x, $I + y \in R/I$, with $x, y \in R$, we have

$$(I + x)(I + y) = I + xy = I + yx = (I + y)(I + x)$$

(b) Let 1_R denote the unity element of R. We claim that $I + 1_R$ is a unity of R/I. To see this, given $I + x \in R/I$, with $x \in R$, we have

$$(I+x)(I+1_R) = I + x1_R = I + x$$
 and $(I+1_R)(I+x) = I + 1_R x = I + x$ QED

4. Saracino, Section 17, Problem 17.22(a,b):

Let R be a commutative ring and X a subset of R. The **annihilator** of X is

 $\operatorname{Ann}(X) = \{ r \in R \, | \, rx = 0 \text{ for every } x \in X \}.$

- (a) Prove that Ann(X) is an ideal of R.
- (b) Let $R = \mathbb{Z}/12\mathbb{Z}$. Find Ann($\{2\}$).

Proof. (a) (Nonempty) We claim that $0 \in Ann(X)$. To see this, given $x \in X$, we have 0x = 0, as desired.

(Closed) Given $r, s \in Ann(X)$, we claim that $r - s \in Ann(X)$. To see this, given $x \in X$, we have (r - s)x = rx - sx = 0 - 0 = 0, as desired.

(Sticky) Given $r \in Ann(X)$ and $y \in R$, we claim that $yr, ry \in Ann(X)$. Since ry = yr (because R is commutative), we need only prove one of these. Given $x \in X$, we have

$$(yr)x = y(rx) = y0 = 0$$
, as desired. QED (a)

(b): We claim that $Ann(\{2\}) = \{0, 6\}$, as we now prove:

(⊆): Given $n \in \operatorname{Ann}(\{2\})$, we have $2n = 0_{\mathbb{Z}/12\mathbb{Z}}$, i.e., $2n \equiv 0 \pmod{12}$. That is, n is an integer such that 2n is divisible by 12, so n must be divisible by 6. The only such integers in $\mathbb{Z}/12\mathbb{Z}$ are n = 0, 6. (⊃): We have $0 \cdot 2 = 0$ and $6 \cdot 2 = 0 \pmod{12}$, so $0, 6 \in \operatorname{Ann}(\{2\})$. QED

5. Saracino, Section 17, Problem 17.33:

Let R be a ring, and let I and J be ideals of R. Define $I + J = \{x + y \mid x \in I, y \in J\}$.

- (a) Prove that I + J is an ideal of R.
- (b) Let $R = \mathbb{Z}$. Find $6\mathbb{Z} + 14\mathbb{Z}$.

Proof. (a): We have $0 \in I, J$, and hence $0 = 0 + 0 \in I + J$, so I + J is nonempty. Given $a, b \in I + J$, write a = s + t and b = x + y with $s, x \in I$ and $t, y \in J$. Then

$$a - b = s + t - (x + y) = (s - x) + (t - y) \in I + J.$$

Finally, given $a \in I + J$ and $r \in R$, write a = x + y with $x \in I$ and $y \in J$. Then $ar = (x + y)r = xr + yr \in I + J$,

and similarly $ra \in I + J$.

(b): [Note: every ideal of \mathbb{Z} is principal, i.e., of the form $n\mathbb{Z}$. Since we know from part (a) that $6\mathbb{Z} + 14\mathbb{Z}$ is an ideal, we only need to find which integer n to use. It turns out it's gcd(6, 14) = 2, in light of Theorem 4.2, that 2 = 6x + 14y for some integers x, y. E.g. x = -2, y = 1 work.]

We claim that $6\mathbb{Z} + 14\mathbb{Z} = 2\mathbb{Z}$. To prove (\subseteq) , given $6x + 14y \in \text{LHS}$ with $x, y \in \mathbb{Z}$, we have $6x + 14y = 2(3+7y) \in 2\mathbb{Z}$. To prove (\supseteq) , given $2n \in 2\mathbb{Z}$ with $n \in \mathbb{Z}$, we have $-12n \in 6\mathbb{Z}$ and $14n \in 14\mathbb{Z}$, and hence $2n = -12n + 14n \in \text{LHS}$. QED

6. Saracino, Section 18, Problem 18.1(b,c,e):

Which of the following are ring homomorphisms? [Prove your answers, of course]

- (b) $\varphi : \mathbb{C} \to \mathbb{C}$ by $\varphi(a+bi) = a bi$
- (c) $\varphi : \mathbb{C} \to \mathbb{R}$ by $\varphi(a + bi) = a$
- (e) Let R be the ring of polynomials with real coefficients, and let $\varphi : R \to R$ by $\varphi(p(x)) = p'(x)$, the derivative of p(x).

Solution. (b): YES, ring homomorphism Given $z, w \in \mathbb{C}$, write z = a + bi and w = c + di with $a, b, c, d \in \mathbb{R}$. Then

$$\varphi(z+w) = \varphi((a+c) + (b+d)i) = (a+c) - (b+d)i = (a-bi) + (c-di) = \varphi(z) + \varphi(w),$$

and

$$\varphi(zw) = \varphi((ac - bd) + (ad + bc)i) = (ac - bd) - (ad + bc)i = (a - bi)(c - di) = \varphi(z)\varphi(w). \quad \text{QED (a)}$$

(c): NO, not ring homomorphism Let $z = w = i \in \mathbb{C}$. Then $\varphi(z) = \varphi(w) = 0$. However, zw = -1, and $\varphi(-1) = -1$. Thus,

$$\varphi(zw) = \varphi(-1) = -1 \neq 0 = 0 \cdot 0 = \varphi(z) \cdot \varphi(w).$$

(e): NO, not ring homomorphism Let p(x) = q(x) = x. Then $\varphi(p) = \varphi(q) = 1$. However, $pq(x) = x^2$, so $\varphi(pq) = 2x$. Thus,

$$\varphi(pq) = \varphi(x^2) = 2x \neq 1 = 1 \cdot 1 = \varphi(p) \cdot \varphi(q).$$