
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #18

1. Saracino, Section 17, Problem 17.9:
Let R = {q ∈ Q | q = a/b with a, b ∈ Z and b is odd}. Prove that R has a unique maximal ideal.

Proof. Let I = ⟨2⟩ = {2a/b | a, b ∈ Z with b odd}. We will show that I is the unique maximal ideal.
Ideal: Since R is a commutative ring, any principal ideal is actually an ideal. [Alternately, you can prove
from scratch that I is nonempty, is closed under + and −, and satisfies the ideal property.]
Maximal: Note that I ̸= R since 1/1 ∈ R∖ I. That is, I is a proper ideal.
Given an ideal J with I ⊊ J ⊆ R, there is some x ∈ J ∖ I. Write x = a/b with a, b ∈ Z and b odd; by
definition of I, we must have a odd, since x ̸∈ I. Thus, x−1 = b/a ∈ R.
Hence, given any y ∈ R, we have y = (yx−1)x ∈ J since yx−1 ∈ R and x ∈ J . Thus, R ⊆ J and hence
J = R, proving that I is maximal.
Unique. Suppose there were some maximal ideal J ⊊ R with J ̸= I. If J ⊆ I, then J ⊊ I ⊆ R,
contradicting the maximality of J . Thus, J ̸⊆ I, and hence there is some x ∈ J ∖ I.
We now follow the exact same argument as above: given any y ∈ R, we have y = (yx−1)x ∈ J since
yx−1 ∈ R and x ∈ J . Thus, R ⊆ J and hence J = R, contradicting the fact that J is maximal and
therefore proper. By this contradiction, I is indeed unique as a maximal ideal. QED

2. Saracino, Section 17, Problem 17.13:
Let I be an ideal of a ring R. Prove that the distributive laws hold in R/I.

Proof. Given I + x, I + y, I + z ∈ R/I, with x, y, z ∈ R, we have

(I + x)
(
(I + y) + (I + z)

)
= (I + x)

(
I + (y + z)

)
= I + x(y + z) = I + (xy + xz)

= (I + xy) + (I + xz) = (I + x)(I + y) + (I + x)(I + z)
and (

(I + y) + (I + z)
)
(I + x) =

(
I + (y + z)

)
(I + x) = I + (y + z)x = I + (yx+ zx)

= (I + yx) + (I + zx) = (I + y)(I + x) + (I + z)(I + x) QED

3. Saracino, Section 17, Problem 17.14:
Let R be a ring and I an ideal of R.

(a) If R is commutative, prove that R/I is commutative.

(b) If R has unity, prove that R/I has unity.

Proof. (a) Given I + x, I + y ∈ R/I, with x, y ∈ R, we have

(I + x)(I + y) = I + xy = I + yx = (I + y)(I + x)

(b) Let 1R denote the unity element of R. We claim that I + 1R is a unity of R/I. To see this, given
I + x ∈ R/I, with x ∈ R, we have

(I + x)(I + 1R) = I + x1R = I + x and (I + 1R)(I + x) = I + 1Rx = I + x QED

4. Saracino, Section 17, Problem 17.22(a,b):
Let R be a commutative ring and X a subset of R. The annihilator of X is

Ann(X) = {r ∈ R | rx = 0 for every x ∈ X}.
(a) Prove that Ann(X) is an ideal of R.

(b) Let R = Z/12Z. Find Ann({2}).
Proof. (a) (Nonempty) We claim that 0 ∈ Ann(X). To see this, given x ∈ X, we have 0x = 0, as
desired.

(Closed) Given r, s ∈ Ann(X), we claim that r − s ∈ Ann(X). To see this, given x ∈ X, we have

(r − s)x = rx− sx = 0− 0 = 0, as desired.

(Sticky) Given r ∈ Ann(X) and y ∈ R, we claim that yr, ry ∈ Ann(X). Since ry = yr (because R is
commutative), we need only prove one of these. Given x ∈ X, we have



(yr)x = y(rx) = y0 = 0, as desired. QED (a)

(b): We claim that Ann({2}) = {0, 6}, as we now prove:

(⊆): Given n ∈ Ann({2}), we have 2n = 0Z/12Z, i.e., 2n ≡ 0 (mod 12). That is, n is an integer such that
2n is divisible by 12, so n must be divisible by 6. The only such integers in Z/12Z are n = 0, 6.

(⊇): We have 0 · 2 = 0 and 6 · 2 = 0 (modulo 12), so 0, 6 ∈ Ann({2}). QED

5. Saracino, Section 17, Problem 17.33:
Let R be a ring, and let I and J be ideals of R. Define I + J = {x+ y |x ∈ I, y ∈ J}.

(a) Prove that I + J is an ideal of R.

(b) Let R = Z. Find 6Z+ 14Z.
Proof. (a): We have 0 ∈ I, J , and hence 0 = 0 + 0 ∈ I + J , so I + J is nonempty.
Given a, b ∈ I + J , write a = s+ t and b = x+ y with s, x ∈ I and t, y ∈ J . Then

a− b = s+ t− (x+ y) = (s− x) + (t− y) ∈ I + J.

Finally, given a ∈ I + J and r ∈ R,write a = x+ y with x ∈ I and y ∈ J . Then

ar = (x+ y)r = xr + yr ∈ I + J,

and similarly ra ∈ I + J .

(b): [Note: every ideal of Z is principal, i.e., of the form nZ. Since we know from part (a) that 6Z+14Z
is an ideal, we only need to find which integer n to use. It turns out it’s gcd(6, 14) = 2, in light of
Theorem 4.2, that 2 = 6x+ 14y for some integers x, y. E.g. x = −2, y = 1 work.]
We claim that 6Z+ 14Z = 2Z. To prove (⊆), given 6x+ 14y ∈ LHS with x, y ∈ Z, we have 6x+ 14y =
2(3 + 7y) ∈ 2Z. To prove (⊇), given 2n ∈ 2Z with n ∈ Z, we have −12n ∈ 6Z and 14n ∈ 14Z, and hence
2n = −12n+ 14n ∈ LHS. QED

6. Saracino, Section 18, Problem 18.1(b,c,e):
Which of the following are ring homomorphisms? [Prove your answers, of course]

(b) φ : C → C by φ(a+ bi) = a− bi

(c) φ : C → R by φ(a+ bi) = a

(e) Let R be the ring of polynomials with real coefficients, and let φ : R → R by φ(p(x)) = p′(x),
the derivative of p(x).

Solution. (b): YES, ring homomorphism Given z, w ∈ C, write z = a + bi and w = c + di with
a, b, c, d ∈ R. Then

φ(z + w) = φ
(
(a+ c) + (b+ d)i

)
= (a+ c)− (b+ d)i = (a− bi) + (c− di) = φ(z) + φ(w),

and

φ(zw) = φ
(
(ac− bd) + (ad+ bc)i

)
= (ac− bd)− (ad+ bc)i = (a− bi)(c− di) = φ(z)φ(w). QED (a)

(c): NO, not ring homomorphism Let z = w = i ∈ C. Then φ(z) = φ(w) = 0. However, zw = −1, and

φ(−1) = −1. Thus,

φ(zw) = φ(−1) = −1 ̸= 0 = 0 · 0 = φ(z) · φ(w).

(e): NO, not ring homomorphism Let p(x) = q(x) = x. Then φ(p) = φ(q) = 1. However, pq(x) = x2,

so φ(pq) = 2x. Thus,

φ(pq) = φ(x2) = 2x ̸= 1 = 1 · 1 = φ(p) · φ(q).


