Math 350, Spring 2025 Professor Rob Benedetto
Solutions to Homework #17

1. Saracino, Section 16, Problem 16.3:
Let F = {a+bv2|a,b € Q}. Prove that F is a field under ordinary addition and multiplication.

Proof. We have 0 + 0v/2 € F, so F is nonempty.

Given z,y € F, write z = a + bv/2 and y = ¢ + dv/2 with a,b,¢,d € Q. Then
t—y=(a+b)—(c+dV2cF and zy= (ac+2bd)+ (ad+ bc)V2 € F,

so that F' C R is indeed closed under both — and -. By Corollary 17.2, then, F' is a subring of R.

Note also that - is commutative on R, since for any =,y € F', we have x,y € R, and hence z -y =y - x.

In addition, 1 =14 0v/2 € F, so for any « € F, we have z € R, and hence -1 =1-2 = z. Thus, F is a

commutative ring with unity. It remains only to show that every element of F' \ {0} has a multiplicative

inverse in F.

Given z = a + bv/2 € F ~ {0}, we have a,b € Q, not both zero. Then a? # 2b%, as otherwise we

would either have (a/b)? = 2 (so that /2 € Q, a contradiction) or else b = 0 and hence a = 0 (also a
contradiction, to our assumption that a and b are not both 0). Hence we have a? — 2b% # 0. Let

a (—=b)
y= a? — 2b2 +a2—2b2\/§€FI
Then
a? — 2b2 ba — ab
Yr === 2 "o a2—2b?\/§:17
as desired. QED

2. Saracino, Section 16, Problem 16.7: Let F' be a field, let a,b € F, and assume a # 0. Show that the
equation ax + b = 0 can be solved for x € F’; that is, there exists x € F' that makes the equation true.

Proof. We have a~! € F, since F is a field and a € F \ {0}. Let z = —a~'b € F. Then
ar+b=a(—a"'b) +b=—(aa 'b) +b=—(1b) +b=—-b+b=0,
where the second equality is by Theorem 16.1(ii). QED

3. Saracino, Section 16, Problem 16.18, slight variant:
Let R be a nontrivial ring with unity (so 1 # 0), and assume that R has no nonzero zero-divisors. Let
a,b € R with ab = 1. Prove that ba = 1 also.

Proof. Given a,b € R with ab = 1, we first claim that a # 0. Indeed, if ¢ = 0, then 1 = ab = 0b = 0,
contradicting the fact that 1 # 0 and proving our claim.
Next, observe that

a(ba —1) = a(ba) —al = (ab)Ja—a=la—a=a—a=0.
Since a # 0, this shows that ba — 1 is a zero-divisor. Since R has no nonzero zero-divisors, then, we have
ba —1 =0. That is, ba = 1. QED

Note: I allowed you to assume 1 # 0, but Saracino doesn’t restrict to that case. That’s because the
result is (trivially) true even if 1 = 0. In that case, we get that R = {0} is trivial, by Corollary 16.2.
Then for any a,b € R, we have ba =0 = 1.

4. Saracino, Section 16, Problem 16.24, variant:
Let Z[i] = {a + bi|a,b € Z}. For any r = a + bi € Z[i], define the norm N(r) by N(r) = a® + b*.

(a) Prove that for all r, s € Z[i], we have N(rs) = N(r)N(s).



(b) Show that r € Z[i] is a unit if and only if N(r) = 1.
(c) Use part (b) to find all the units in Z[i]. (And (briefly) justify your answer, of course.)
Proof. (a): Given r, s € Z[i], write r = a + bi and s = ¢ + di with a,b,¢,d € Z. Then
N(rs) = N((ac—bd)+ (ad+be)i) = (ac—bd)*+ (ad+bc)* = (a’c* — 2abed +b°d?) + (a*d® + 2abed + b*c?)
= a’? + a*d® + V2 + V?d® = (a® + b2)(® + d*) = N(r)N(s).

(b): Given r € Z[i], we must show the “iff” statement.
(=): Since r is a unit, there is some s € Z[i] such that rs = 1. By part (b), then,
N(r)N(s) = N(rs) = N(1) =124+ 0% = 1.
However, both N(r) and N(s) are nonnegative integers. The only way the product of two nonnegative
integers can be 1 is for both multiplicands to be 1. Thus, N(r) = 1.
(«<): Write r = a + bi with a,b € Z; we are assuming a? + b*> = N(r) = 1.
Let s = a — bi € Z[i]. Then sr = rs = (a + bi)(a — bi) = a®? + b*> = 1. Thus, r has multiplicative inverse
s € Z[i] and hence is a unit. QED

(c): We claim the set of units in Z[i] is {£1,+i}. Indeed, each of these four elements is a unit, since
N(+1+0i) =1 = N(0 + (£1)i). Conversely, if a + bi € Z[i] is a unit, then a® + b?> = 1, and hence
either a®> =1 and b> = 0 or a® = 0 and b?> = 1. In the former case, a + bi = £1, and in the latter case,
a + bi = +i, proving our claim. QED

5. Saracino, Section 17, Problem 17.2(a,c), ideals only:

Let R = {f : R — R} be the ring of real-valued functions on the real line, under ordinary addition and
multiplication of functions. Which of the following subsets .S of R are ideals?

[As always, prove your answers.]

(a) S ={feR[f(1) =0}
() S={feR[fB)=f(4)}
Solution. (a):
(Nonempty): The zero-function Or(z) = 0 has Or € R with Or(1) =0, so O € S.
(Closed): Given f,g € S, we have (f —¢)(1) = f(1) —¢g(1) =0—-0=0,s0 f —g € S.
(Sticky): Given f € S and h € R, we have fh = hf, and (fh)(1) = f(1)-h(1) = 0-h(1) = 0, so
hf = fh € S. QED (a)

(c): ‘NO, not ideal‘
Let f(x) =1, and let g(x) = x, so that f,g € R. Note also that f(3) =1 = f(4), so f € S. However,
fg =g isnot in S, because g(3) = 3 # 4 = g(4). Thus, S does not satisfy the sticky property. QED

6. Saracino, Section 17, Problem 17.25(a):
Let R be a ring, and let I and J be ideals of R. Prove that I NJ is an ideal of R.

Proof. (Nonempty): We have Or € I and O € J, since they are both ideals. Thus, O € I N J.

(Closed): Given x,y € INJ, then z —y € [ since x,y € I and I is an ideal. Similarly, x —y € J. Thus,
z—yelnd.

(Sticky): Given x € INJ and r € R, we have z € I, and hence xr,rx € I | since I is an ideal. Similarly,
zr,rx € J. Thus, xr,rz € INJ. QED



