
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #17

1. Saracino, Section 16, Problem 16.3:
Let F = {a+ b

√
2 | a, b ∈ Q}. Prove that F is a field under ordinary addition and multiplication.

Proof. We have 0 + 0
√
2 ∈ F , so F is nonempty.

Given x, y ∈ F , write x = a+ b
√
2 and y = c+ d

√
2 with a, b, c, d ∈ Q. Then

x− y = (a+ b)− (c+ d)
√
2 ∈ F and xy = (ac+ 2bd) + (ad+ bc)

√
2 ∈ F,

so that F ⊆ R is indeed closed under both − and ·. By Corollary 17.2, then, F is a subring of R.
Note also that · is commutative on R, since for any x, y ∈ F , we have x, y ∈ R, and hence x · y = y · x.
In addition, 1 = 1+ 0

√
2 ∈ F , so for any x ∈ F , we have x ∈ R, and hence x · 1 = 1 · x = x. Thus, F is a

commutative ring with unity. It remains only to show that every element of F ∖ {0} has a multiplicative
inverse in F .
Given x = a + b

√
2 ∈ F ∖ {0}, we have a, b ∈ Q, not both zero. Then a2 ̸= 2b2, as otherwise we

would either have (a/b)2 = 2 (so that
√
2 ∈ Q, a contradiction) or else b = 0 and hence a = 0 (also a

contradiction, to our assumption that a and b are not both 0). Hence we have a2 − 2b2 ̸= 0. Let

y =
a

a2 − 2b2
+

(−b)

a2 − 2b2

√
2 ∈ F.

Then

yx = xy =
a2 − 2b2

a2 − 2b2
+

ba− ab

a2 − 2b2

√
2 = 1,

as desired. QED

2. Saracino, Section 16, Problem 16.7: Let F be a field, let a, b ∈ F , and assume a ̸= 0. Show that the
equation ax+ b = 0 can be solved for x ∈ F ; that is, there exists x ∈ F that makes the equation true.

Proof. We have a−1 ∈ F , since F is a field and a ∈ F ∖ {0}. Let x = −a−1b ∈ F . Then

ax+ b = a(−a−1b) + b = −
(
aa−1b

)
+ b = −(1b) + b = −b+ b = 0,

where the second equality is by Theorem 16.1(ii). QED

3. Saracino, Section 16, Problem 16.18, slight variant:
Let R be a nontrivial ring with unity (so 1 ̸= 0), and assume that R has no nonzero zero-divisors. Let
a, b ∈ R with ab = 1. Prove that ba = 1 also.

Proof. Given a, b ∈ R with ab = 1, we first claim that a ̸= 0. Indeed, if a = 0, then 1 = ab = 0b = 0,
contradicting the fact that 1 ̸= 0 and proving our claim.
Next, observe that

a(ba− 1) = a(ba)− a1 = (ab)a− a = 1a− a = a− a = 0.

Since a ̸= 0, this shows that ba− 1 is a zero-divisor. Since R has no nonzero zero-divisors, then, we have
ba− 1 = 0. That is, ba = 1. QED

Note: I allowed you to assume 1 ̸= 0, but Saracino doesn’t restrict to that case. That’s because the
result is (trivially) true even if 1 = 0. In that case, we get that R = {0} is trivial, by Corollary 16.2.
Then for any a, b ∈ R, we have ba = 0 = 1.

4. Saracino, Section 16, Problem 16.24, variant:
Let Z[i] = {a+ bi | a, b ∈ Z}. For any r = a+ bi ∈ Z[i], define the norm N(r) by N(r) = a2 + b2.

(a) Prove that for all r, s ∈ Z[i], we have N(rs) = N(r)N(s).



(b) Show that r ∈ Z[i] is a unit if and only if N(r) = 1.

(c) Use part (b) to find all the units in Z[i]. (And (briefly) justify your answer, of course.)

Proof. (a): Given r, s ∈ Z[i], write r = a+ bi and s = c+ di with a, b, c, d ∈ Z. Then
N(rs) = N

(
(ac−bd)+(ad+bc)i

)
= (ac−bd)2+(ad+bc)2 = (a2c2−2abcd+b2d2)+(a2d2+2abcd+b2c2)

= a2c2 + a2d2 + b2c2 + b2d2 = (a2 + b2)(c2 + d2) = N(r)N(s).

(b): Given r ∈ Z[i], we must show the “iff” statement.
(⇒): Since r is a unit, there is some s ∈ Z[i] such that rs = 1. By part (b), then,

N(r)N(s) = N(rs) = N(1) = 12 + 02 = 1.
However, both N(r) and N(s) are nonnegative integers. The only way the product of two nonnegative
integers can be 1 is for both multiplicands to be 1. Thus, N(r) = 1.
(⇐): Write r = a+ bi with a, b ∈ Z; we are assuming a2 + b2 = N(r) = 1.
Let s = a− bi ∈ Z[i]. Then sr = rs = (a+ bi)(a− bi) = a2 + b2 = 1. Thus, r has multiplicative inverse
s ∈ Z[i] and hence is a unit. QED

(c): We claim the set of units in Z[i] is {±1,±i}. Indeed, each of these four elements is a unit, since
N(±1 + 0i) = 1 = N(0 + (±1)i). Conversely, if a + bi ∈ Z[i] is a unit, then a2 + b2 = 1, and hence
either a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1. In the former case, a + bi = ±1, and in the latter case,
a+ bi = ±i, proving our claim. QED

5. Saracino, Section 17, Problem 17.2(a,c), ideals only:
Let R = {f : R → R} be the ring of real-valued functions on the real line, under ordinary addition and
multiplication of functions. Which of the following subsets S of R are ideals?
[As always, prove your answers.]

(a) S = {f ∈ R | f(1) = 0}
(c) S = {f ∈ R | f(3) = f(4)}

Solution. (a): YES, ideal

(Nonempty): The zero-function 0R(x) = 0 has 0R ∈ R with 0R(1) = 0, so 0R ∈ S.

(Closed): Given f, g ∈ S, we have (f − g)(1) = f(1)− g(1) = 0− 0 = 0, so f − g ∈ S.

(Sticky): Given f ∈ S and h ∈ R, we have fh = hf , and (fh)(1) = f(1) · h(1) = 0 · h(1) = 0, so
hf = fh ∈ S. QED (a)

(c): NO, not ideal

Let f(x) = 1, and let g(x) = x, so that f, g ∈ R. Note also that f(3) = 1 = f(4), so f ∈ S. However,
fg = g is not in S, because g(3) = 3 ̸= 4 = g(4). Thus, S does not satisfy the sticky property. QED

6. Saracino, Section 17, Problem 17.25(a):
Let R be a ring, and let I and J be ideals of R. Prove that I ∩ J is an ideal of R.

Proof. (Nonempty): We have 0R ∈ I and 0R ∈ J , since they are both ideals. Thus, 0R ∈ I ∩ J .

(Closed): Given x, y ∈ I ∩ J , then x− y ∈ I since x, y ∈ I and I is an ideal. Similarly, x− y ∈ J . Thus,
x− y ∈ I ∩ J .

(Sticky): Given x ∈ I ∩J and r ∈ R, we have x ∈ I, and hence xr, rx ∈ I , since I is an ideal. Similarly,
xr, rx ∈ J . Thus, xr, rx ∈ I ∩ J . QED


