Solutions to Homework #16

1. Saracino, Section 13, Problem 13.14: Let G, H be finite groups, and let $\varphi : G \to H$ be an onto homomorphism. Prove that |H| divides |G|.

Proof. Let $K = \ker \varphi \triangleleft G$. By the Fundamental Theorem, we have $G/K \cong H$, and hence |H| = [G : K]. Therefore, by Lagrange, we have $|G| = |K| \cdot |G : K| = |K| \cdot |H|$, and hence |H| divides |G|. QED

2. Saracino, Section 13, Problem 13.19: Let $\varphi : G \to K$ be a homomorphism. Prove that φ is one-to-one if and only if $\ker(\varphi) = \{e_G\}$.

Proof. (\Rightarrow): (\supseteq): We have $\varphi(e_G) = e_H$, and hence $e_G \in \ker(\varphi)$.

- (\subseteq) : Given $x \in \ker(\varphi)$, we have $\varphi(x) = e_H = \varphi(e_G)$, and hence $x = e_G$ since φ is 1-1.
- (\Leftarrow): Given $g, h \in G$ with $\varphi(g) = \varphi(h)$, we have $\varphi(g)[\varphi(h)]^{-1} = e_H$, and hence $\varphi(gh^{-1}) = e_H$. Thus, $gh^{-1} \in \ker(\varphi) = \{e_G\}$ and hence $gh^{-1} = e_G$. That is, g = h.
- 3. Saracino, Section 13, Problem 13.5: Let G be the group of all real-valued functions on the real line, under addition of functions. Let $H = \{ f \in G \mid f(0) = 0 \}$.
 - (a) Prove that $H \triangleleft G$.
 - (b) Prove that $G/H \cong \mathbb{R}$.

Proof. Define $\varphi: G \to \mathbb{R}$ by $\varphi(f) = f(0)$.

(Homom): Given $f, g \in G$, we have $\varphi(f+g) = (f+g)(0) = f(0) + g(0) = \varphi(f) + \varphi(g)$.

(Onto): Given $y \in \mathbb{R}$, define f(x) = y (the constant function with value y).

Then $f \in G$, and $\varphi(f) = f(0) = y$.

(Kernel): We have $\ker(\varphi) = \{ f \in G \mid \varphi(f) = 0 \} = \{ f \in G \mid f(0) = 0 \} = H.$

- (a): By the above, we have $H = \ker(\varphi) \triangleleft G$ by Theorem 13.1.
- (b): By the above, we have $G/H = G/\ker(\varphi) \cong \mathbb{R}$ by the Fundamental Theorem (Theorem 13.2). QED
- 4. (A useful fact for the next problem): Let $G = \mathbb{Q}^{\times}$, and let $H = \{a/b \mid a, b \text{ are odd integers}\}$. Prove that for every $x \in G$, there exist unique numbers $k \in \mathbb{Z}$ and $h \in H$ such that $x = 2^k h$.

Proof. We begin with an observation: For any nonzero integer $c \in \mathbb{Z} \setminus \{0\}$, let $\ell \geq 0$ be the largest integer such that $2^{\ell}|c$. Then $c = 2^{\ell}a$, where $a \in \mathbb{Z}$ is an odd integer.

[Equivalently, factor c into primes $c=\pm 2^{e_1}p_2^{e_2}\cdots p_M^{e_M}$, where $p_2,\ldots,p_M\geq 3$ are odd primes. Then we are defining $\ell=e_1\geq 0$ and $a=\pm p_2^{e_2}\cdots p_M^{e_M}$.]

(Existence): Given $x \in G = \mathbb{Q}^{\times}$, we can write x = m/n, where $m, n \in \mathbb{Z} \setminus \{0\}$ are nonzero integers. Applying the observation above to both m and n, there are positive integers $i, j \geq 0$ and odd integers $a, b \in \mathbb{Z}$ such that $m = 2^{i}a$ and $n = 2^{j}b$.

Let
$$k = i - j \in \mathbb{Z}$$
, and let $h = a/b \in H$. Then $x = m/n = 2^k h$.

QED Existence

(Uniqueness): Given $x \in G$, suppose we have $x = 2^k \frac{a}{b} = 2^\ell \frac{c}{d}$ with $k, \ell, a, b, c, d \in \mathbb{Z}$ with a, b, c, d odd. Assume without loss that $k \ge \ell$.

Then we have $2^{k-\ell}ad = bc$, with both sides being integers. Since bc is an odd integer, the left side must also be odd, and hence $k - \ell = 0$. That is, $k = \ell$.

It follows that $\frac{a}{b} = \frac{c}{d}$ is the same element of H, as desired.

QED

5. Saracino, Section 13, Problem 13.8: Let $G = \mathbb{Q}^{\times}$, and let $H = \{a/b \mid a, b \text{ are odd integers}\}$. [You may take my word for it that H is a subgroup of G.] Prove that $G/H \cong \mathbb{Z}$.

Proof. Define $\varphi : \mathbb{Q}^{\times} \to \mathbb{Z}$ by $\varphi(2^k h) = k$, for any $k \in \mathbb{Z}$ and $h \in H$.

By the previous problem, this formula for φ is both defined and well-defined, as each $g \in G$ may be written in one and only one way as $2^k h$ with $k \in \mathbb{Z}$ and $h \in H$.

 φ **Homom:** Given $x, y \in \mathbb{Q}^{\times}$, we may write $x = 2^k h_1$ and $y = 2^{\ell} h_2$ by the previous problem, with $k, \ell \in \mathbb{Z}$ and $h_1, h_2 \in H$. Thus,

$$\varphi(xy) = \varphi(2^{k+\ell}h_1h_2) = k + \ell = \varphi(2^kh_1) + \varphi(2^\ell h_2) = \varphi(x) + \varphi(y),$$

where the second equality is because $h_1h_2 \in H$, since H is a subgroup of G.

[Note that the operation on \mathbb{Q}^{\times} is multiplication, whereas the operation on \mathbb{Z} is +, so the above is indeed the correct identity to look for.]

 φ onto: Given $n \in \mathbb{Z}$, then $2^n \in \mathbb{Q}^{\times}$, and $\varphi(2^n) = \varphi(2^n \cdot 1) = n$, since $n \in \mathbb{Z}$ and $1 \in H$.

Kernel of φ **:** We claim $\ker \varphi = H$.

 (\subseteq) : Given $x \in \ker \varphi$, write $x = 2^k h$ with $k \in \mathbb{Z}$ and $h \in H$ by the previous problem.

Then $k = \varphi(x) = 0$, since $x \in \ker \varphi$, and hence $x = 2^0 h = h \in H$.

 (\supseteq) : Given $h \in H$, we have $\varphi(h) = \varphi(2^0 h) = 0$. That is, $h \in \ker \varphi$.

Thus, $\varphi : \mathbb{Q}^{\times} \to \mathbb{Z}$ is an onto homomorphism with kernel H, and therefore $\mathbb{Q}^{\times}/H \cong \mathbb{Z}$, by the Fundamental Theorem.

6. Saracino, Section 16, Problem 16.1: Let R be a ring with unity 1_R . Prove that $(-1_R)a = -a$ for all $a \in R$.

Proof. Given $a \in R$, we have $(-1_R)a = 1_R(-a) = -a$, where the first equality is by Theorem 16.1(ii).

QED

Alternative Proof (from scratch). Given $a \in R$, we have

$$a + (-1_R)a = (1_R)a + (-1_R)a = (1_R - 1_R)a = 0_Ra = 0_R$$

where the last equality is by Theorem 16.1(i). Since + is commutative, we also have $a + (-1_R)a = 0_R$. Thus, $(-1_R)a$ is an additive inverse of a. Since (R, +) is a group, and inverses in a group are unique, we therefore have $(-1_R)a = -a$.

- 7. Saracino, Section 16, Problem 16.13: Let R be a ring with unity.
 - (a) Prove that the multiplicative identity element 1_R of R is unique.
 - (b) Let $a \in \mathbb{R}^{\times}$ be a unit. Prove that the multiplicative inverse a^{-1} of a is unique.

Proof. (a): Suppose $1_R, 1'_R \in R$ are both multiplicative identities. Then

$$1'_R = 1_R 1'_R = 1_R$$
 QED (a)

(b): Given $a \in \mathbb{R}^{\times}$, suppose $b, c \in \mathbb{R}$ are both multiplicative inverses of a. Then

$$b = b1_R = b(ac) = (ba)c = 1_R c = c$$
 QED (b)