QED

QED

Solutions to Homework #14

1. Saracino, Section 11, Problem 11.20: Let G be a group, and let $H \triangleleft G$ be a normal subgroup such that [G:H] = 20 and |H| = 7. Suppose that $x \in G$ and $x^7 = e$. Prove that $x \in H$.

Proof. Since $H \triangleleft G$, we may consider the quotient group G/H.

Then $Hx \in G/H$, with $(Hx)^7 = H(x^7) = He$. Thus, the order of Hx (as an element of G/H) divides 7. On the other hand, since |G/H| = [G:H] = 20, the order o(Hx) also divides 20. Since gcd(7, 20) = 1, we have o(Hx) = 1, and hence Hx = He. Thus, $x = xe^{-1} \in H$. QED

[Note: We never used the hypothesis that |H| = 7. That was just a red herring.]

2. Saracino, Section 11, Problem 11.30(b), slight variant:

Let G be a group. A **commutator** is an element of G that can be written as $xyx^{-1}y^{-1}$ for some $x, y \in G$. Let $C \subseteq G$ be the set of all the commutators, i.e., $C = \{xyx^{-1}y^{-1} \mid x, y \in G\}$.

Prove that for any subgroup $K \subseteq G$, the following are equivalent:

(i) $C \subseteq K$.

(ii) $K \lhd G$, and G/K is abelian.

Proof. (\Rightarrow): (Normality): Given $k \in K$ and $g \in G$, we have $gkg^{-1} = (gkg^{-1}k^{-1})k \in K$, since $gkg^{-1}k^{-1} \in C \subseteq K$, and $k \in K$, and K is closed under multiplication.

(Abelian): Given $Kx, Ky \in G/K$, i.e., given $x, y \in G$, we have $(xy)(yx)^{-1} = xyx^{-1}y^{-1} \in C \subseteq K$, and hence Kxy = Kyx, i.e., (Kx)(Ky) = (Ky)(Kx).

(⇐): Given $c \in C$, there exist $x, y \in G$ such that $c = xyx^{-1}y^{-1}$.

We have (Kx)(Ky) = (Ky)(Kx) since G/K is abelian.

Then Kxy = Kyx, and hence $c = xyx^{-1}y^{-1} = (xy)(yx)^{-1} \in K$.

3. Saracino, Section 12, Problem 12.1(a,b,c,d): Which of the following mappings are homomorphisms? For those that are, which are one-to-one, which are onto, and which are isomorphisms?

- (a) $G = \mathbb{R}^{\times}$, $H = \mathbb{R}_{>0}$, and $\varphi : G \to H$ by $\varphi(x) = |x|$.
- (b) $G = \mathbb{R}_{>0}$, and $\varphi : G \to G$ by $\varphi(x) = \sqrt{x}$.
- (c) G = group of polynomials with real coefficients, under addition, and $\varphi: G \to \mathbb{R}$ by $\phi(p) = p(1)$.
- (d) G as in (c), and $\phi: G \to G$ by $\phi(p) = p'$, the derivative of p(x).

Answers/Proofs. (a): Homomorphism and onto, but NOT one-to-one

Homom: Given $x, y \in G$, we have $\varphi(xy) = |xy| = |x||y| = \varphi(x)\varphi(y)$.

Onto: Given $y \in H$, we have $y \in G$ since y is a nonzero real number, and because y > 0, we have $\varphi(y) = |y| = y$.

Not 1-1: Let $x_1 = 1$ and $x_2 = -1$. Then $x_1 \neq x_2$ but $\varphi(x_1) = 1 = \varphi(x_2)$. QED

(b): Isomorphism

Homom: Given $x, y \in G$, we have $\varphi(xy) = \sqrt{xy} = \sqrt{x}\sqrt{y} = \varphi(x)\varphi(y)$ since x, y > 0.

Onto: Given $y \in G$, let $x = y^2 \in G$. Then because y > 0, we have $\varphi(x) = \sqrt{y^2} = |y| = y$. **1-1:** Given $x_1, x_2 \in G$ such that $\varphi(x_1) = \varphi(x_2)$, we have $\sqrt{x_1} = \sqrt{x_2}$, and hence, squaring both sides,

 $x_1 = x_2.$

(c): Homomorphism and onto, but NOT one-to-one

Homom: Given $p, q \in G$, we have $\varphi(p+q) = (p+q)(1) = p(1) + q(1) = \varphi(p) + \varphi(q)$. **Onto:** Given $b \in \mathbb{R}$, let $p \in G$ be the constant polynomial p(x) = b. Then $\varphi(p) = p(1) = b$. **Not 1-1:** Let $p_1(x) = 0$ and $p_2(x) = x - 1$. Then $p_1 \neq p_2$ but $\varphi(p_1) = p_1(1) = 0 = p_2(1) = \varphi(p_2)$. QED (d): Homomorphism and onto, but NOT one-to-one

Homom: Given $p, q \in G$, we have $\varphi(p+q) = (p+q)' = p' + q' = \varphi(p) + \varphi(q)$.

Onto: Given $q \in G$, let $p \in G$ be an antiderivative of q(x), which we know exists from calculus. (It's always possible to antidifferentiate a polynomial.) Then $\varphi(p) = p' = q$.

Not 1-1: Let $p_1(x) = 0$ and $p_2(x) = 1$. Then $p_1 \neq p_2$ but $\varphi(p_1) = p'_1 = 0 = p'_2 = \varphi(p_2)$. QED

4. Saracino, Section 12, Problem 12.3, first part: Let G be an abelian group, let $n \ge 1$ be a positive integer, and let $\varphi: G \to G$ by $\varphi(x) = x^n$. Prove that φ is a homomorphism.

Proof. Given $x, y \in G$, we have

$$\varphi(xy) = (xy)^n = x^n y^n = \varphi(x)\varphi(y)$$

where the second equality is because G is abelian.

5. Saracino, Section 12, Problem 12.4(a,b): In each case, determine whether or not the two groups are isomorphic.

- (a) (C_{12}, \oplus) and $(\mathbb{Q}_{>0}, \cdot)$
- (b) $(2\mathbb{Z}, +)$ and $(3\mathbb{Z}, +)$

Solutions. (a): C_{12} and $\mathbb{Q}_{>0}$ are Not isomorphic This is because $|C_{12}| = 12 \neq \infty = |\mathbb{Q}_{>0}|$.

(b): $2\mathbb{Z}$ and $3\mathbb{Z}$ are isomorphic

Method 1: Note that $2\mathbb{Z} = \langle 2 \rangle$ and $3\mathbb{Z} = \langle 3 \rangle$ are both infinite cyclic groups. By Theorem 12.3, they are isomorphic to one another.

Method 2: Define $\varphi : 2\mathbb{Z} \to 3\mathbb{Z}$ by $\varphi(n) = 3n/2$.

Then φ is defined since each $n \in 2\mathbb{Z}$ is of the form n = 2m for some $m \in \mathbb{Z}$, and hence $\varphi(n) = 3m \in 3\mathbb{Z}$. It is a homomorphism because for any $x, y \in 2\mathbb{Z}$, we have

 $\varphi(x+y)=3(x+y)/2=3x/2+3y/2=\varphi(x)+\varphi(y).$

To show φ is 1-1: Given $a, b \in 2\mathbb{Z}$ with $\varphi(a) = \varphi(b)$, we have 3a/2 = 3b/2, and hence a = b. Finally, to show φ is onto: Given $y \in 3\mathbb{Z}$, write y = 3m for some $m \in \mathbb{Z}$. Then $2m \in 2\mathbb{Z}$, and $\varphi(2m) = 3m = y$, proving that φ is onto. QED

6. Saracino, Section 12, Problem 12.5: Let G, H be groups. Prove that $G \times H \cong H \times G$. **Proof.** Define $\varphi : G \times H \to H \times G$ by $\varphi(g, h) = (h, g)$. **Homom:** Given $(g, h), (x, y) \in G \times H$, we have

$$\varphi((g,h)(x,y)) = \varphi(gx,hy) = (hy,gx) = (h,g)(y,x) = \varphi(g,h)\varphi(x,y)$$

Onto: Given $(h, g) \in H \times G$, we have $(g, h) \in G \times H$, and $\varphi(g, h) = (h, g)$.

1-1: Given $(g,h), (x,y) \in G \times H$ such that $\varphi(g,h) = \varphi(x,y)$, we have (h,g) = (y,x), and hence h = y and g = x. Therefore, (g,h) = (x,y). QED

QED

QED