
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to Homework #13

1. Saracino, Section 11, Problem 11.5: Let G be a group, let H ⊆ G be a subgroup, and let K ◁ G.
Prove that H ∩K ◁ H.

Proof. By Theorem 5.4(i), H ∩K is a subgroup of G and hence (being a group that is a subset of H) is
a subgroup of H.
Given x ∈ H∩K and h ∈ H, then hxh−1 ∈ H since H is a subgroup and h, x ∈ H. Moreover, hxh−1 ∈ K
since x ∈ K and h ∈ G and K ◁ G. Thus, hxh−1 ∈ H ∩K. QED

2. Saracino, Section 11, Problem 11.8: Let G be a group, let N ◁ G, and let H ⊆ G be any subgroup of
G. Define

NH = {nh |n ∈ N and h ∈ H}.
Prove that NH is a subgroup of G.

Proof. (Nonempty): We have e ∈ N and e ∈ H, and hence ee ∈ NH. Thus, NH ̸= ∅.
(Closed): Given n1h1, n2h2 ∈ NH, i.e., n1, n2 ∈ N and h1, h2 ∈ H, we have

(n1h1)(n2h2) =
(
n1(h1n2h

−1
1 )

)
(h1h2) ∈ NH,

since h1n2h
−1
1 ∈ N since N ◁ G, and therefore n1(h1n2h

−1
1 ) ∈ N , while h1h2 ∈ H.

(Inverses): Given nh ∈ NH, i.e., n ∈ N and h ∈ H, we have

(nh)−1 = h−1n−1 = (h−1n−1h)h−1 ∈ NH,

since h−1n−1h ∈ N because n−1 ∈ N , h−1 ∈ G, and N ◁ G. QED

[Alternative Proof of Closure: Since N ◁ G, we have h1N = Nh1, and hence h1n2 ∈ h1N = Nh1,
meaning that there is some n′ ∈ N such that h1n2 = n′h1. Thus, n1h1n2h2 = (n1n

′)(h1h2) ∈ NH.]
[Alternative Proof of Inverses: Since N ◁G, we have h−1N = Nh−1, and hence there is some n′ ∈ N
such that h−1n−1 = n′h−1. Thus, (nh)−1 = n′h−1 ∈ NH.]

3. Saracino, Section 11, Problem 11.11 (slight rephrasing): Which of the 10 subgroups of D4 are normal,
and which are not?

Answer/Proof. We know from Section 8 that there are 10 subgroups of D4, which we now analyze for
normality.

D4: normal Since it is the whole group, D4 ◁ D4 is automatically normal in itself.

⟨f2⟩ and {e}: normal From a previous homework problem (Saracino 8.14), we have Z(D4) = ⟨f2⟩, which
contains both of these subgroups. Thus, by Theorem 11.2, both of these subgroups are normal in D4.

{e, f2, g, f2g}, ⟨f⟩, and {e, f2, fg, f3g}: normal All of these subgroups have order 4 and hence index

8/4 = 2 in D4. By Theorem 11.3, then, they are all normal in D4.

⟨g⟩, ⟨f2g⟩, ⟨fg⟩, ⟨f3g⟩: not normal Each of the four subgroups here is of the form Hi = {e, f ig} for

i = 0, 1, 2, 3. To prove none is normal, for each i, we need to find h ∈ Hi and x ∈ D4 such that
xhx−1 ̸∈ Hi. Well, for each i = 0, 1, 2, 3, we have f ∈ D4 and f ig ∈ Hi, but

f(f ig)f−1 = (ff i)(gf−1) = f i+1(fg) = f i+2g ̸∈ Hi.

That is, D4 has 6 normal subgroups, namely D4, {e, f2, g, f2g}, ⟨f⟩, {e, f2, fg, f3g}, ⟨f2⟩, and {e}.

4. Saracino, Section 11, Problem 11.12(b): Let G = A4. Show that there exists subgroups H,K ⊆ G
such that K ◁ H and H ◁ G, but K is not normal in G.

Proof. Let H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, which is a normal subgroup of A4 by Example 2,
page 102.
Let f = (1 2)(3 4) ∈ H, and let K = {e, f} = ⟨f⟩, which is a subgroup of H of index 4/2 = 2, and hence
which is normal in H by Theorem 11.3.



However, g = (1 2 3) ∈ A4 has gfg−1 = (1 2 3)(1 2)(3 4)(1 3 2) = (1 4)(2 3) ̸∈ K, and hence K ̸◁A4. QED

[Note 1 from RLB: An alternative way to see that K ◁ H is to observe that H is abelian, so all of its
subgroups are normal in H.]
[Note 2 from RLB: As this example shows, “H is normal” is an imprecise statement; it should really
be “H is normal in G”, unless the “in G” part is abundantly clear from context. That is, “normal” is a
property of the relationship between two groups, not just an property of the smaller group. As we see
here, K is a subgroup of both H and G, but although K is normal in H, it is not normal in G.]

5. Saracino, Section 11, Problem 11.27: Let H be a subgroup of G. Define

N(H) = {g ∈ G | gHg−1 = H},
which is called the normalizer of H in G.

(a) Prove that N(H) is a subgroup of G.
(b) Prove that H ◁ N(H).
(c) Let K ⊆ G be a subgroup such that H ◁ K. Prove that K ⊆ N(H).

Proof. (a): Nonempty: We have e ∈ H because e ∈ G and eHe−1 = H.

Closed: Given x, y ∈ N(H), we have xy ∈ G and

(xy)H(xy)−1 = (xy)H
(
y−1x−1

)
= x

(
yHy−1

)
x−1 = xHx−1 = H,

where the last two equalities are because x, y ∈ N(H). Thus, xy ∈ N(H).

Inverses: Given x ∈ N(H), we have x−1 ∈ G and

x−1H(x−1)−1 = x−1Hx = x−1
(
xHx−1

)
x = (x−1x)H(x−1x) = eHe = H,

where in the second equality we replaced H by xHx−1; these two sets are equal because x ∈ N(H).
Thus, x−1 ∈ H. QED

(b): First, we claim that H is a subset of N(H). Given h ∈ H, we have hHh−1 = hH = H, proving this
claim. [The first equality is by the right coset relation Hh−1 = He = H, for example, and the second is
similarly because hH = eH = H.] Thus, H is a subgroup of N(H).
To prove normality, given h ∈ H and x ∈ N(H), we have xhx−1 ∈ xHx−1 = H. QED

(c): Given k ∈ K, we must show that kHk−1 = H. However, since H ◁ K, the (i)⇒(ii) part of
Theorem 11.1 says this is true, and we are done. QED

Note from RLB: More Careful Proofs: It is, arguably, a little sketchy to push around set equalities
like

(xy)H
(
y−1x−1

)
= x

(
yHy−1

)
x−1 = xHx−1 = H

as I did in the “Closed” step of part (a) above. Instead, then, one can prove the various set equalities in
the above proofs the usual way: by proving each set is contained in the other.
I won’t do all of the relevant such proofs here, but for example, here is a more careful proof that
(xy)H

(
y−1x−1

)
= H, assuming that x, y ∈ N(H).

Proof of (⊆): Given g ∈ (xy)H
(
y−1x−1

)
, there exists h ∈ H such that g = xyhy−1x−1. But then, since

y ∈ N(H), we have yhy−1 ∈ H, and therefore g = x(yhy−1)x−1 ∈ xHx−1 = H. QED (⊆)

Proof of (⊇): Given h ∈ H, then since x ∈ N(H), we have h ∈ H = xHx−1. That is, there exists
h′ ∈ H such that h = xh′x−1.
Similarly, since y ∈ N(H), we have h′ ∈ H = yHy−1, so there exists h′′ ∈ H such that h′ = yh′′y−1.
Thus, h = xh′x−1 = xyh′′y−1x−1 ∈ (xy)H

(
y−1x−1

)
. QED (⊇)

6. Saracino, Section 11, Problem 11.10:
Let G be a group, let g ∈ G have finite order m, and let H ◁ G. Prove that the order of the element
Hg ∈ G/H is finite and divides m.



Proof. We have (Hg)m = H(gm) = He, where the first equality is by the definition of the group law on
G/H, and the second is because gm = e, since o(g) = m. Thus, by Theorem 4.4(ii), we have o(Hg) is
finite and divides m. QED

7. Saracino, Section 11, Problem 11.18: Let G be cyclic and let H ⊆ G be a subgroup. Prove that G/H
is cyclic.

Proof. Let x be a generator for G. It suffices to show that Hx is a generator for G/H.
Given an arbitrary element Hg in G/H, we have g ∈ G, and hence, since G = ⟨x⟩, there is some n ∈ Z
such that g = xn. Therefore, by the group law on G/H, we have (Hx)n = H(xn) = Hg. QED


