Homework #16

Due Tuesday, April 15 in Gradescope by 11:59 pm ET

READ Sections 13, 16 in Saracino and the (optional!) Other Group Topics handout

WATCH 1. Optional: Video 29: Multiplication Modulo n: Extra (24:48)

2. Required: Video 30: Simple Groups (30:06)

WRITE AND SUBMIT solutions to the following problems.

Problem 1. (7 points) Saracino, Section 13, Problem 13.14:

Let G, H be finite groups, and let $\varphi : G \to H$ be an onto homomorphism.

Prove that |H| divides |G|.

Problem 2. (9 points) Saracino, Section 13, Problem 13.19:

Let $\varphi: G \to K$ be a homomorphism. Prove that φ is one-to-one if and only if $\ker(\varphi) = \{e_G\}$.

Problem 3. (14 points) Saracino, Section 13, Problem 13.5:

Let G be the group of all real-valued functions on the real line, under addition of functions. Let $H = \{ f \in G \mid f(0) = 0 \}.$

(a) Prove that $H \triangleleft G$.

(b) Prove that $G/H \cong \mathbb{R}$.

[Suggestion from RLB: do both parts in one fell swoop by defining a function $\varphi: G \to \mathbb{R}$ that you then prove is a homomorphism, is onto, and has kernel H.]

Problem 4. (11 points) (A useful fact for the next problem):

Let $G = \mathbb{Q}^{\times}$, and let $H = \{a/b \mid a, b \text{ are odd integers}\}$. Prove that for every $x \in G$, there exist unique numbers $k \in \mathbb{Z}$ and $h \in H$ such that $x = 2^k h$.

[Note: don't forget to prove \mathbf{both} existence and uniqueness of k and h.]

Problem 5. (16 points) Saracino, Section 13, Problem 13.8:

Let $G = \mathbb{Q}^{\times}$, and let $H = \{a/b \mid a, b \text{ are odd integers}\}$, as in the previous problem.

[You may take my word for it that H is a subgroup of G.]

Prove that $G/H \cong \mathbb{Z}$.

[Suggestion from RLB: Use the previous problem, and define $\varphi: \mathbb{Q}^{\times} \to \mathbb{Z}$ by $\varphi(2^k h) = k$. Now prove φ is a well-defined homomorphism that is onto, and that $\ker \varphi = H$; then apply the Fundamental Theorem.]

Problem 6. (5 points) Saracino, Section 16, Problem 16.1:

Let R be a ring with unity 1_R . Prove that $(-1_R)a = -a$ for all $a \in R$.

Problem 7. (8 points) Saracino, Section 16, Problem 16.13: Let R be a ring with unity.

- (a) Prove that the multiplicative identity element 1_R of R is unique.
- (b) Let $a \in \mathbb{R}^{\times}$ be a unit. Prove that the multiplicative inverse a^{-1} of a is unique.

Optional Challenges (do NOT hand in): Saracino Problems 13.4, 13.13, 13.20, 13.27

Questions? You can ask in:

Class:

Section 01: MWF 9:00–9:50am, SMUD 014 Section 02: MWF 11:00–11:50am, SMUD 205

My office hours: in my office (SMUD 406):

Tue 1:30–3:00pm Wed 1:30–3:00pm Fri 1:30–2:30pm

Allison Tanguay's QCenter Drop-in Hours, in SMUD 208:

MWF 10am – noon TuTh 1pm – 4pm

Math Fellow Drop-in Hours, in SMUD 208:

Sun 6:00-7:30pm (Kevin) Mon 7:30-9:00pm (Claire) Tue 8:30-10:00pm (Aidan) Wed 7:30-9:00pm (Claire) Thu 8:30-10:00pm (Aidan) Fri 6:00-7:30pm (Kevin)

Also, you may email me any time at rlbenedetto@amherst.edu