Homework #12

Due Tuesday, March 25 in Gradescope by 11:59 pm ET

READ Sections 10–11 in Saracino and the Groups of Order Six handout

WATCH 1. Required: Video 23: The Class Equation (31:31)

2. Optional: Video 24: Conjugacy Classes in S_n (32:49)

WRITE AND SUBMIT solutions to the following problems.

Problem 1. (8 points) Saracino, Section 10, Problem 10.15:

Let G be a finite group, and let H be a subgroup of G. Let K be a subgroup of H. Prove that [G:K]=[G:H][H:K].

Problem 2. (8 points) Saracino, Section 10, Problem 10.23(a):

Let S = the set of even integers, and let T = the set of odd integers.

Prove that S and T have the same cardinality.

[Note from RLB: that is, define a function $f: S \to T$, and prove that your function is one-to-one and onto.]

Problem 3. (12 points) Saracino, Section 10, Problem 10.25:

Find the conjugacy classes in Q_8 , and write down the class equation for Q_8 .

Problem 4. (14 points) Saracino, Section 10, Problem 10.28:

Let p be a prime number, and let n be a positive integer. Let G be a group with $|G| = p^n$. Use the class equation to prove that |Z(G)| is divisible by p.

Problem 5. (12 points) Saracino, Section 10, Problem 10.29:

Let p be a prime number and let G be a group such that $|G| = p^2$. Prove that G is abelian.

[Suggestion from RLB: Use the previous problem. Then, using Lagrange's Theorem, for any $a \in G$ with $a \notin Z(G)$, what can you say about the centralizer Z(a)?]

Problem 6. (8 points) Saracino, Section 11, Problem 11.1:

Recall that
$$SL(2,\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2,\mathbb{R}) \middle| ad - bc = 1 \right\}.$$

We have already seen that $SL(2,\mathbb{R})$ is a subgroup of $GL(2,\mathbb{R})$. Prove that $SL(2,\mathbb{R}) \triangleleft GL(2,\mathbb{R})$.

Problem 7. (8 points) Saracino, Section 11, Problem 11.2:

Let H be the subgroup of $G = GL(2, \mathbb{R})$ consisting of all matrices $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ such that $ad \neq 0$. Is H a normal subgroup of G? Why or why not?

(Optional Challenges and Office Hour Information on next page)

Optional Challenges (do NOT hand in): Saracino Problems 10.32, 10.33

Questions? You can ask in:

Class:

Section 01: MWF 9:00–9:50am, SMUD 014 Section 02: MWF 11:00–11:50am, SMUD 205

My office hours: in my office (SMUD 406):

Tue 1:30-3:00pmWed 1:30-3:00pmFri 1:30-2:30pm

Allison Tanguay's QCenter Drop-in Hours, in SMUD 208:

 $\begin{array}{l} MWF\ 10am-noon \\ TuTh\ 1pm-4pm \end{array}$

Math Fellow Drop-in Hours, in SMUD 208:

Sun 6:00-7:30pm (Kevin) Mon 7:30-9:00pm (Claire) Tue 8:30-10:00pm (Aidan) Wed 7:30-9:00pm (Claire) Thu 8:30-10:00pm (Aidan) Fri 6:00-7:30pm (Kevin)

Also, you may email me any time at rlbenedetto@amherst.edu