Subgroups of Cyclic Groups

In this handout, I'll write out a proof of the following theorem, which is Theorem 5.2 in Saracino's book:

Theorem. Let G be a **cyclic** group, and let $H \subseteq G$ be a subset. Then H is also cyclic.

Proof. By hypothesis, there is some $a \in G$ such that $G = \langle a \rangle$.

[That is, G has a generator, which we're choosing to call a. We need to find a generator for H.] Note that H, being a subgroup, contains the identity element e of G. We consider two cases. **Case 1**. $H = \{e\}$, i.e., the only element in H is the identity. Then $H = \langle e \rangle$, and we are done. **Case 2**. $H \supseteq \{e\}$. [That is, H contains at least one non-identity element.] Let $S = \{n \ge 1 \mid a^n \in H\}$, which is some set of positive integers.

Claim 1: $S \neq \emptyset$.

Proof of Claim 1. By our assumption in this case, there is some $h \in H$ with $h \neq e$. Then $h \in G = \langle a \rangle$, and hence there is some $m \in \mathbb{Z}$ such that $h = a^m$.

If m = 0, then $h = a^0 = e$, a contradiction, so $m \neq 0$.

If $m \ge 1$, then $m \in S$, since $m \ge 1$ and $a^m = h \in H$.

Finally, if $m \leq -1$, then $-m \in S$, since $-m \geq 1$, and $a^{-m} = h^{-1} \in H$.

Either way, we get $S \neq \emptyset$, as desired.

QED Claim 1

Thus, S is a nonempty set of positive integers.

By the Well-Ordering Principle, then, S has a smallest element $k \in S$. That is, $\exists k \in S$ such that for all $n \in S$ we have $k \leq n$.

[For more on the Well-Ordering Principle, see page 4 of Saracino. Also see Optional Video 11, "Another mx + ny Proof," which states and discusses the Well-Ordering Principle.]

Let $b = a^k$, which is an element of H, since $k \in S$. [Recall the definition of S; since $k \in S$, we have $k \ge 1$ and $a^k \in H$.]

Claim 2: $H = \langle b \rangle$.

Proof of Claim 2.

(\subseteq): Given $h \in H$, we have $h \in G = \langle a \rangle$, and hence $\exists m \in \mathbb{Z}$ such that $h = a^m$. By the Division Algorithm, $\exists q, r \in \mathbb{Z}$ such that m = qk + r and $0 \leq r \leq k - 1$. [Recall that $k \in S$, so $k \geq 1$, which is required to use the Division Algorithm.] So $h = a^m = a^{qk+r} = (a^k)^q a^r = b^q a^r$.

Therefore, $a^r = b^{-q}h$, which is an element of H, since $b, h \in H$ and H is a subgroup.

If we had $r \ge 1$, then since we also have $a^r \in H$, we would have $r \in S$, by definition of S. But on the other hand, k is the smallest element of S, and we have r < k. This is a contradiction. Therefore, $r \ge 1$. That is, r = 0.

Hence,
$$h = b^q a^0 = b^q \in \langle b \rangle$$
. QED (\subseteq)

 $\begin{array}{ll} (\supseteq): \text{ Given } x \in \langle b \rangle, \text{ we have } x = b^n \text{ for some } n \in \mathbb{Z}.\\ \text{Since } b \in H \text{ and } H \text{ is a subgroup, it follows that } x \in H. \\ & \text{QED } (\supseteq)\\ \text{QED } \text{Claim } 2 \end{array}$

QED Theorem