Math 350, Spring 2025

Professor Rob Benedetto

Solutions to Midterm Exam 1, Section 01

1. (15 points) Compute the order of the element (18, 15) in the group $C_{28} \times C_{50}$.

Solution. Since 1 is a generator for C_{28} , a theorem [namely Theorem 4.4(iii), but you don't need to know that number] says that

in
$$C_{28}$$
, we have $o(18) = \frac{28}{(28, 18)} = \frac{28}{2} = 14$,

since $28 = 2^2 \cdot 7$ and $18 = 2 \cdot 3^2$, so gcd(28, 18) = 2. Similarly,

in
$$C_{50}$$
, we have $o(15) = \frac{50}{(50, 15)} = \frac{50}{5} = 10$,

since $50 = 2 \cdot 5^2$ and $15 = 3 \cdot 5$, so gcd(50, 15) = 5. Thus, by another theorem [namely Theorem 6.1(i)], we have

$$o((18, 15)) = \operatorname{lcm}(14, 10) = \boxed{70}$$

since $14 = 2 \cdot 7$ and $10 = 2 \cdot 5$, so their lcm is $2 \cdot 5 \cdot 7 = 70$.

2. (15 points) Let G be a group, and let $a \in G$. Suppose that

$$a^{500} = e$$
 and $a^{35} = e$, but $a^{32} \neq e$,

where e is the identity element of G. Prove that o(a) = 5.

Solution. Let n = o(a). Since $a^{500} = e$, n must be finite, i.e., $n \ge 1$ is a positive integer. By a theorem [Theorem 4.4(ii)], we must have both n|500 and n|35, since $a^{500} = e = a^{35}$. Thus, $n|\gcd(500, 35)$, i.e., n|5, since $500 = 2^2 \cdot 5^3$ and $35 = 5 \cdot 7$. That is, n is either 1 or 5. If n = 1, then we would have $a^{32} = e$, since 1|32. This is a contradiction, so $n \ne 1$. Thus, we must have n = 5. QED

3. (15 points) Let G be a group, and let $a, b \in G$ be elements for which the following equation holds:

$$ba = a^4b$$

Use induction to prove, for all positive integers $n \ge 1$, that $ba^n = a^{4n}b$.

Solution. Base Case: For n = 1, we have $ba^1 = ba = a^4b = a^{4(1)}b$ by hypothesis.

Inductive Step: Suppose the conclusion holds for some $n = k \ge 1$; we must show it for k + 1. We have $ba^{k+1} = ba^k a = a^{4k}ba = a^{4k}a^4b = a^{4k+4}b = a^{4(k+1)}b$, as desired. Here, the second equality is by the inductive hypothesis, and the third is by the original hypothesis. QED

4. (20 points) Let H be the following set of 2×2 matrices:

$$H = \left\{ \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} \in GL(2, \mathbb{R}) \ \middle| \ a, b \in \mathbb{R} \text{ and } b > 0 \right\}.$$

Prove that H is a subgroup of $GL(2, \mathbb{R})$.

Solution. (Nonempty): Choosing a = 0 and b = 1 we have $a, b \in \mathbb{R}$ with a < 0, so $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H$, and hence $H \neq \emptyset$.

(Closed): Given $A, B \in H$, write $A = \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} \in H$ and $B = \begin{bmatrix} 1 & c \\ 0 & d \end{bmatrix} \in H$, with $a, b, c, d \in \mathbb{R}$ and b, d > 0. Then $AB = \begin{bmatrix} 1 & c + ad \\ 0 & bd \end{bmatrix}$. Since $c + ad, bd \in \mathbb{R}$ with bd > 0, we have $AB \in H$. (Inverses): Given $A \in H$, write $A = \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} \in H$, with $a, b \in \mathbb{R}$ and b > 0. Then $A^{-1} = \frac{1}{b-0} \begin{bmatrix} b & -a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -a/b \\ 0 & 1/b \end{bmatrix}$. Since $b \neq 0$, we have $-a/b \in \mathbb{R}$ and $1/b \in \mathbb{R}$. Moreover, since b > 0, we have 1/b > 0. Thus, $A^{-1} \in H$.

5. (15 points) Let G be a group, and let $a \in G$. Define a function $f: G \to G$ by

$$f(x) = x^{-1}a.$$

Prove that f is one-to-one and onto.

Solution. (One-to-one): Given $x_1, x_2 \in G$ such that $f(x_1) = f(x_2)$, we have $x_1^{-1}a = x_2^{-1}a$, and hence [by right cancellation] we have $x_1^{-1} = x_2^{-1}$. Therefore, $x_1 = (x_1^{-1})^{-1} = (x_2^{-1})^{-1} = x_2$, as desired.

(Onto): Given $y \in G$, let $x = ay^{-1} \in G$. Then $f(x) = x^{-1}a = (ay^{-1})^{-1}a = (y^{-1})^{-1}a^{-1}a = ye = y$ QED

6. (20 points) Let G be the set \mathbb{R} , and for $x, y \in \mathbb{R}$, define x * y to be

$$x * y = 3 + x + y$$

Prove that (G, *) is a group.

Solution. (Bin Op): Given $x, y \in \mathbb{R}$, then $x * y = 3 + x + y \in \mathbb{R}$.

(Assoc): Given $x, y, z \in \mathbb{R}$, we have (x * y) * z = (3 + x + y) * z = 3 + (3 + x + y) + z = 3 + x + (3 + y + z) = x * (3 + y + z) = x * (y * z).(Id): Let $e = -3 \in \mathbb{R}$. Given $x \in \mathbb{R}$, then x * e = 3 + x + (-3) = x and e * x = 3 + (-3) + x = x. (Inv): Given $x \in \mathbb{R}$, let $y = -6 - x \in \mathbb{R}$. Then x * y = 3 + x + (-6 - x) = -3 = e and y * x = 3 + (-6 - x) + x = -3 = e. QED

OPTIONAL BONUS. (2 points.) Let G be a group of order 350. Prove that there is an element $x \in G$ other than the identity such that $x^{-1} = x$.

Proof. Let $S_0 = \{g \in G : g^{-1} \neq g\}$. I claim that $|S_0|$ is even.

[The idea is that elements of S_0 come in pairs: g and g^{-1} .]

To prove the claim, if $S_0 \neq \emptyset$, then pick $g_0 \in S_0$, so that $g_0^{-1} \neq g_0$, and so also $g_0^{-1} \in S_0$. Define $S_1 = S_0 \setminus \{g_0, g_0^{-1}\}$.

If $S_1 \neq \emptyset$, then similarly, pick $g_1 \in S_1$, so that $g_1^{-1} \neq g_1$, and so also $g_1^{-1} \in S_1$. Define $S_2 = S_1 \setminus \{g_1, g_1^{-1}\}$.

Continue in this fashion, defining S_3, S_4, \ldots by removing two elements at a time, until eventually we get to $S_m = \emptyset$. [Note: Technically we need an induction here, but never mind.] Then $|S_0| = 2 + |S_1| = 4 + |S_2| = \cdots = 2m + |S_m| = 2m$ is even, proving the claim.

Now define $T = G \setminus S_0 = \{g \in G : g^{-1} = g\}$. So $|T| = 350 - |S_0|$ is also even. However, we have $e \in T$, since $e^{-1} = e$. So |T| is an even number at least 1; thus, $|T| \ge 2$. Which means there is at least one element $x \in T$ besides the identity.

That is, there is some
$$x \in G \setminus \{e\}$$
 such that $x^{-1} = x$. QED