
Math 350, Spring 2025 Professor Rob Benedetto

Solutions to the Final Exam

1. (25 points) Find all subgroups of C3 × C3. That is, in your writeup:

• List all the subgroups,

• Prove that each item in your list is indeed a subgroup, and

• Prove that every subgroup does indeed appear on your list.

[Hint : There are 6 different subgroups in total. You may not assume that fact in your proofs; I just
mention it to you for your convenience.]

Solution/Proof. Let G = C3 × C3. Its subgroups are:

C3 × C3 = G, ⟨(1, 0)⟩ = C3 × {0}, ⟨(0, 1)⟩ = {0} × C3, ⟨(1, 1)⟩, ⟨(1, 2)⟩, {(0, 0)}

All are subgroups:
• C3 × C3 is the full group and hence is (the improper) subgroup.
• {(0, 0)} is just the identity and hence is (the trivial) subgroup.
• Each of the others is a cyclic subgroup generated by an element, and hence each is a subgroup.

All subgroups appear:
Note that |G| = 3 · 3 = 9. Given an arbitrary subgroup H ⊆ G, we must have |H|

∣∣ |G| by Lagrange’s
Theorem, So |H| ∈ {1, 3, 9}.
If |H| = 1, then since the identity (0, 0) must belong to H, we have H = {(0, 0)}.
If |H| = 9, then H = G.

If |H| = 3, then because 3 is prime, a Corollary of Lagrange tells us that H is cyclic. Thus, H must
be of the form ⟨(a, b)⟩ for some (a, b) ∈ G with o((a, b)) = 3.
By Theorem 6.1(i), we have o((x, y)) = lcm(o(x), o(y)) for any (x, y) ∈ G. Because o(1) = o(2) = 3
and o(0) = 1 in C3, all elements of G have order 3 except the identity (0, 0). We now consider all eight
such choices for the generator (a, b) of H:

• If (a, b) is (1, 0) or (2, 0), then H = ⟨(1, 0)⟩ = {(0, 0), (1, 0), (2, 0)} = ⟨(2, 0)⟩.
• If (a, b) is (0, 1) or (0, 2), then H = ⟨(0, 1)⟩ = {(0, 0), (0, 1), (0, 2)} = ⟨(0, 2)⟩.
• If (a, b) is (1, 1) or (2, 2), then H = ⟨(1, 1)⟩ = {(0, 0), (1, 1), (2, 2)} = ⟨(2, 2)⟩.
• If (a, b) is (1, 2) or (2, 1), then H = ⟨(1, 2)⟩ = {(0, 0), (1, 2), (2, 1)} = ⟨(2, 1)⟩. QED

2. (25 points) Consider the 200-element dihedral group

D100 = {e, f, f2, . . . , f99, g, fg, f2g, . . . , f99g}

of rotations and flips of a regular 100-sided polygon.
Let h ∈ D100 be the flip h = f18g, and let H = Z(h) be the centralizer of h in D100.
(That is, H = {x ∈ D100 |hx = xh}, which we know to be a subgroup, by HW 6, Problem 6.)

2a. Prove that H = {e, f50, f18g, f68g}.
2b. Prove that H is not a normal subgroup of D100.

Proof. (a): Define H ′ = {e, f50, f18g, f68g}. We will prove that H = H ′.
(⊆): Given x ∈ H = Z(h), write x = f igj , where 0 ≤ i ≤ 99 and 0 ≤ j ≤ 1.
If j = 0, so that x = f i, then

f18f−ig = f18gf i = hx = xh = f if18g = f18f ig.



Multiplying on the left by f−18 and on the right by g, we get f−i = f i, so that f2i = e, and hence
100|2i, so that 50|i, and hence either i = 0 or i = 50. That is, either x = f0 = e ∈ H ′ or x = f50 ∈ H ′,
as desired.

Otherwise, we have j = 1, so that x = f ig, and hence

f18−i = f18f−igg = f18gf ig = hx = xh = f igf18g = f if−18gg = f i−18.

Thus, f36−2i = e, and hence 100|(36−2i), so that 50|(18− i). That is, i ≡ 18 (mod 50), so that either
i = 18 or i = 68. Hence, either x = f18g ∈ H ′, or x = f68g ∈ H ′, as desired. QED (⊆).

(⊇): We simply check that each of the elements of H ′ commutes with h:
Two elements of H are e and h. We have eh = he and hh = hh trivially, so e, h ∈ Z(h) = H.
In addition, f50h = f68g = f18f50g = f18gf−50 = hf50, so that f50 ∈ Z(h) = H.
The last element of H ′ is f68g = f50h. We have (f50h)h = (hf50)h = h(f50h),
so that f50h ∈ Z(h) = H. QED

[Alternative last line: Z(h) is closed under multiplication (it’s a subgroup), so f50h ∈ Z(h) = H.]

(b): Consider f ∈ D100 and h = f18g ∈ H. Then

fhf−1 = f(f18g)f−1 = f19(gf−1) = f19(fg) = f20g ̸∈ H,

and hence H ̸◁ D100. QED

3. (21 points) Let φ : A4 → C8 be a homomorphism, where A4 is the (12-element) alternating group
on 4 symbols, and C8 is the cyclic group of order 8.
Prove that φ is the trivial homomorphism. That is, prove that φ(g) = 0 for all g ∈ A4.

[Hint: if σ ∈ A4 is a 3-cycle, what can you prove about φ(σ)?]

Proof. First, we claim that for any 3-cycle σ ∈ A4, we have φ(σ) = 0

To prove this claim, given such σ, let m = o(φ(σ)).
Since o(σ) = 3, Theorem 12.4(iii) tells us that m|3, so that m is 1 or 3.
On the other hand, by a Corollary of Lagrange, m

∣∣ |C8|, i.e., m|8, and hence m ̸= 3.
Thus, m = 1. That is, o(φ(σ)) = 1, so that φ(σ) = 0. QED Claim

The kernel kerφ is a subgroup of A4; by the Claim, every 3-cycle is in kerφ. By Exercise 8.5 (Home-
work 9, Problem 2), there are 8 3-cycles in A4, and |A4| = 12. Therefore, setting n = | kerφ|, we have
n ≥ 8 and, by Lagrange’s Theorem, n|12. It follows that n = 12, and hence kerφ = A4. That is,
φ(g) = 0 for all g ∈ A4. QED

(Alternative proof, assuming the claim): Given any g ∈ A4, first suppose that g is a 3-cycle; then
we are done by the Claim. And if g = e, then φ(g) = 0 because φ is a homomorphism.

Otherwise, we know from Exercise 8.5 (Homework 9, Problem 2) that g is one of (1, 2)(3, 4) or
(1, 3)(2, 4) or (1, 4)(2, 3).
We have (1, 2)(3, 4) = (1, 2, 3)(2, 3, 4), and hence φ((1, 2)(3, 4)) = φ((1, 2, 3)) +φ((2, 3, 4)) = 0+ 0 = 0
by the Claim.
Similarly, φ((1, 3)(2, 4)) = φ((1, 3, 2)) + φ((3, 2, 4)) = 0 + 0 = 0, and
φ((1, 4)(2, 3)) = φ((1, 4, 2)) + φ((2, 3, 4)) = 0 + 0 = 0. QED

4. (15 points) Let G1, G2, G3 be groups, and let φ : G1 → G2 and ψ : G2 → G3 be homomorphisms.
Suppose that ψ is onto, and that ψ ◦ φ is the trivial homomorphism.

4a. Prove that kerψ ⊇ φ(G1).

4b. If kerψ = φ(G1), prove that G3
∼= G2/φ(G1).



Proof. (a): Given y ∈ ϕ(G1), there exists x ∈ G1 such that φ(x) = y.
Thus, ψ(y) = ψ(φ(x)) = e3, so y ∈ kerψ. QED (a)

(b): Assuming kerψ = ϕ(G1), we have G2/ϕ(G1) = G2/ kerψ, which is isomorphic to G3 by the
Fundamental Theorem of Group Homomorphisms, since ψ is onto. QED (b)

5. (23 points) Let R be a ring with unity. Define a relation ∼ on R by, for a, b ∈ R:

a ∼ b⇐⇒ ∃u ∈ R× s.t. b = au.

5a. Prove that ∼ is an equivalence relation on R.

5b. Suppose further that R is an integral domain.
For any a, b ∈ R, prove that aR = bR if and only if a ∼ b.

[Recall that aR denotes the principal ideal generated by a.]

Proof. (a): Reflexive: Given a ∈ R, we have 1R ∈ R× and a = 1Ra, so a ∼ a.

Symmetric: Given a, b ∈ R such that a ∼ b, there is a unit u ∈ R× such that b = au. Then u−1 ∈ R×

is also a unit, and bu−1 = a, so that b ∼ a.

Transitive: Given a, b, c ∈ R such that a ∼ b and b ∼ c, there are units u, v ∈ R× such that b = au
and c = bv. Then uv ∈ R× is also a unit, and c = bv = (au)v = a(uv), so a ∼ c. QED (a)

(b): Given a, b ∈ R arbitrary.

(⇒): We have a = a1R ∈ aR = bR, so there is some x ∈ R such that a = bx.
We also have b = b1R ∈ bR = aR, so there is some y ∈ R such that b = ay.
If a = 0R, then b = ay = 0R · y = 0R = 0R = a, so a ∼ b (by reflexivity).
So we may assume for the rest of the proof that a ̸= 0R.

We have a(yx) = (ay)x = bx = a = a1R, and hence a(yx − 1R) = 0R. Since a ̸= 0R and R is an
integral domain, it follows that yx− 1R = 0R, and hence xy = yx = 1R. Thus, y ∈ R× is a unit (with
y−1 = x), so that the equation b = ay yields that a ∼ b. QED (⇒)

(⇐): Since a ∼ b, there is some u ∈ R× such that b = au. We now prove aR = bR:

(⊆): Given ax ∈ aR, we have a = bu−1, and hence ax = (bu−1)x = b(u−1x) ∈ bR. QED (⊆)

(⊇): Given by ∈ bR, we have by = (au)y = a(uy) ∈ aR. QED (⊇)
QED (b)

6. (21 points) Let φ : R → S be an onto homomorphism of rings, and let I ⊆ R be a prime ideal.
By Theorem 18.4(iv), we know that φ(I) is an ideal of S.
Suppose that kerφ ⊆ I. Prove that φ(I) is a prime ideal of S.

Proof. As noted in the statement of the problem, we already know φ(I) is an ideal of S.

Given y1, y2 ∈ S such that y1y2 ∈ φ(I), there exists t ∈ I such that φ(t) = y1y2.
In addition, since φ is onto, there exist x1, x2 ∈ R such that φ(x1) = y1 and φ(x2) = y2. Thus,

φ(x1x2) = φ(x1)φ(x2) = y1y2 = φ(t),

and hence φ(x1x2 − t) = φ(x1x2)− φ(t) = 0S .
Therefore, x1x2−t ∈ kerφ ⊆ I, and because we also have t ∈ I, it follows that x1x2 = (x1x2−t)+t ∈ I.
Since I is a prime ideal, we have either x1 ∈ I or x2 ∈ I.
If x1 ∈ I, then y1 = φ(x1) ∈ φ(I), as desired.
Otherwise, we have x2 ∈ I, so y2 = φ(x2) ∈ φ(I). QED



7. (35 points) Let R be a commutative ring, and let I ⊆ R be an ideal. Define

J = {r ∈ R | there is an integer n ≥ 1 such that rn ∈ I}.

7a. Let x, y ∈ R, and let k ≥ 1 be a positive integer. Prove that there are integers
c0, . . . , ck ∈ Z such that (x− y)k = c0x

k + c1x
k−1y + c2x

k−2y2 + · · ·+ ck−1xy
k−1 + cky

k.

[Suggestion: Use induction on k.]

7b. Prove that J is an ideal of R.

[Suggestion: Part (a) may come in handy at some point.]

7c. Prove that the quotient ring R/J contains no nonzero nilpotent elements.

Proof. (a): By induction on k. For k = 1, (x − y)1 = x − y = 1x + (−1)y is already of the desired
form.
Assuming the statement for a particular k ≥ 1, and given x, y ∈ R, there are integers c0, . . . , ck ∈ Z
such that

(x− y)k = c0x
k + c1x

k−1y + c2x
k−2y2 + · · ·+ ck−1xy

k−1 + cky
k

Thus,

(x− y)k+1 = (x− y)(x+ y)k = (x− y)
(
c0x

k + c1x
k−1y + · · ·+ ck−1xy

k−1 + cky
k
)

=
(
c0x

k+1 + c1x
ky + · · ·+ ckxy

k
)
−
(
c0x

ky + c1x
k−1y2 + · · ·+ cky

k+1
)

= c0x
k+1 + (c1 − c0)x

ky + · · ·+ (ck−1 − ck)xy
k + (−ck)yk+1,

which is of the desired form. QED (a)

(b): Nonempty: We have 01 = 0 ∈ I, and hence 0 ∈ J .

Subtraction: Given x, y ∈ J , there are integers m,n ≥ 1 such that xm, yn ∈ I. Then by the Lemma
applied to k = m+ n ≥ 2, there are integers ci such that

(x− y)k = c0x
k + c1x

k−1y + · · ·+ ck−1xy
k−1 + cky

k

Each term in the sum on the right side is of the form cix
k−iyi, where ci ∈ Z. If i ≥ n, then the term

is of the form ryn with r = cix
k−iyi−n ∈ R, and hence ryn ∈ I. Otherwise, we have 0 ≤ i ≤ n− 1, so

that the term is of the form sxm with s = cix
n−iyi ∈ R, and hence sxm ∈ I.

Thus, we have (x− y)k ∈ I, since it is a sum of elements of I. Therefore, x− y ∈ J .

Sticky: Given x ∈ J and r ∈ R, there is an integer n ≥ 1 such that xn ∈ I. Then because R is
commutative, we have (rx)n = rnxn ∈ I. Thus, xr = rx ∈ J . QED (b)

(c): Given a nilpotent element (J + a) ∈ R/J , there is [by definition of nilpotent] some integer n ≥ 1
such that (J + a)n = J + 0. Therefore, J + an = J + 0, or equivalently, an − 0 ∈ J . Thus, there is
some integer m ≥ 1 such that (an − 0)m ∈ I; that is, amn ∈ I. Since mn ≥ 1 is an integer, then, we
also have a ∈ J . Hence, J + a = J + 0.
We have just shown that the only nilpotent element in R/J is the zero element. QED (c)

8. (35 points) Let F2 = {0, 1} denote the field of two elements (that the book calls Z2). Let
f = X4 +X + 1 ∈ F2[X].

8a. Prove that f is irreducible in F2[X].

8b. Use f and the ideas of Section 20 to construct a field with exactly 16 elements.

Don’t forget to justify all of your claims. (As usual, you may quote theorems to do so, but for example,
in part (b) you must prove that the object you construct is indeed a field, and that it has exactly 16
elements.)



Proof. (a). Suppose that f = gh where g, h ∈ F2[X] are non-units, so that deg g,deg h ≥ 1.
We have f(0) = 0 + 0 + 1 = 1 ̸= 0 and f(1) = 1 + 1 + 1 = 1 ̸= 0, so that f has no factors in F2[X] of
degree 1.
Thus, since deg g + deg h = deg f = 4, we have deg g = deg h = 2. Write g = a2X

2 + a1X + a0 and
h = b2X

2 + b1X + b0, with ai, bi ∈ F2, and with a2, b2 ̸= 0. In particular, a2 = b2 = 1, and we have

X4 +X + 1 = (X2 + a1X + a0)(X
2 + b1X + b0)

= X4 + (a1 + b1)X
3 + (a0 + a1b1 + b0)X

2 + (a0b1 + a1b0)X + a0b0.

Equating the constant terms on each side of this equation, we have a0b0 = 1, so that a0 = b0 = 1.
Therefore, equating the X terms, we have a1 + b1 = 1.
However, equating the X3 terms, we have a1 + b1 = 0, a contradiction.

Thus, so such g and h exist, proving that f is irreducible. QED (a)

(b): Let I be the principal ideal I = ⟨f⟩ of F2[X]. Then I is a maximal ideal by Theorem 20.2, since
f is irreducible.
Let K = F2[X]/I, which is a field by Theorem 17.7. It suffices to show that |K| = 16.

Claim 1: K = {I + a0 + a1X + a2X
2 + a3X

3 : ai ∈ F2}
Proof of Claim 1. (⊇): This inclusion is clear, because K is the set of all right cosets I + g.
(⊆): Given I + g ∈ K, by the division algorithm there are q, r ∈ F2[X] with g = qf + r and
deg(r) < deg(f) = 4. That last condition means precisely that r = a0 + a1X + a2X

2 + a3X
3

for some a0, a1, a2, a3 ∈ F2. Meanwhile, the first condition says that g − r = qf ∈ I, and hence
I + g = I + r = I + a0 + a1X + a2X

2 + a3X
3 ∈ RHS. QED Claim 1

Claim 2: If I + a0 + a1X + a2X
2 + a3X

3 = I + b0 + b1X + b2X
2 + b3X

3, then ai = bi for each i.

Proof of Claim 2. By the coset relation, we have (a0−b0)+(a1−b1)X+(a2−b2)X2+(a3−b3)X3 ∈ I.
That is, there is some h ∈ F2[X] such that (a0 − b0) + (a1 − b1)X + (a2 − b2)X

2 + (a3 − b3)X
3 = hf .

If h ̸= 0, then deg(h) ≥ 0; so taking degrees of both sides, we get

3 ≥ deg
(
(a0 − b0) + (a1 − b1)X + (a2 − b2)X

2 + (a3 − b3)X
3
)
= deg(h) + deg(f) ≥ deg(f) = 4,

a contradiction. Thus, h = 0, and therefore a0 − b0 = a1 − b1 = a2 − b2 = a3 − b3 = 0 QED Claim 2

We have just shown that each element of K has a unique coset representative of the form a0 + a1X +
a2X

2 + a3X
3 with ai ∈ F2. Since there are 2 choices for each coefficient, there are 24 = 16 total

possible choices of such coset representatives, and hence exactly 16 elements in K.

BONUS A. (2 points) Recall that A6 denotes the alternating group on 6 objects, and S4 is the
symmetric group on 4 objects. Find an injective homomorphism φ : S4 → A6. (And of course, prove
all your claims.)

Answer/Proof. Each σ ∈ S4 is a bijective function from {1, 2, 3, 4} to itself. For each such σ, define
φ(σ) as a function from {1, 2, 3, 4, 5, 6} to itself by

(
φ(σ))(i) =



σ(i) if i ∈ {1, 2, 3, 4},
5 if i = 5 and σ is even,

6 if i = 6 and σ is even,

6 if i = 5 and σ is odd,

5 if i = 6 and σ is odd.

That is, if we write σ and φ(σ) in disjoint cycle notation, we have



φ(σ) =

{
σ if σ is even,

σ (5, 6) if σ is odd.

Since (5, 6) is an odd permutation, the outputs above are all even permutations, and hence φ is indeed
a function φ : S4 → A6.

Claim 1: φ is a homomorphism

Proof of Claim 1. Given σ, τ ∈ S4, we must show that φ(σ ◦ τ) = φ(σ) ◦ φ(τ), as functions from
{1, 2, 3, 4, 5, 6} to itself.
Given i ∈ {1, 2, 3, 4}, we have τ(i) ∈ {1, 2, 3, 4} as well, and hence(

φ(σ ◦ τ)
)
(i) = (σ ◦ τ)(i) = σ

(
τ(i)

)
=

(
φ(σ)

)
(τ(i)) =

(
φ(σ)

)((
φ(τ)

)
(i)

)
=

(
φ(σ) ◦ φ(τ)

)
(i).

Given i ∈ {5, 6}, we now wish to prove the same identity. If i = 5, let j = 6; and if i = 6, then let
j = 5.

Case 1. If σ, τ are both even, then στ is even, and(
φ(σ ◦ τ)

)
(i) = i = φ(σ)(i) =

(
φ(σ)

)((
φ(τ)

)
(i)

)
=

(
φ(σ) ◦ φ(τ)

)
(i).

Case 2. If σ, τ are both odd, then στ is even, and(
φ(σ ◦ τ)

)
(i) = i = φ(σ)(j) =

(
φ(σ)

)((
φ(τ)

)
(i)

)
=

(
φ(σ) ◦ φ(τ)

)
(i).

Case 3. If σ is even and τ is odd, then στ is odd, and(
φ(σ ◦ τ)

)
(i) = j = φ(σ)(j) =

(
φ(σ)

)((
φ(τ)

)
(i)

)
=

(
φ(σ) ◦ φ(τ)

)
(i).

Case 4. If σ is odd and τ is even, then στ is odd, and(
φ(σ ◦ τ)

)
(i) = j = φ(σ)(i) =

(
φ(σ)

)((
φ(τ)

)
(i)

)
=

(
φ(σ) ◦ φ(τ)

)
(i).

Thus, for all i ∈ {1, 2, 3, 4, 5, 6}, we have verified that
(
φ(σ ◦ τ)

)
(i) =

(
φ(σ) ◦ φ(τ)

)
(i). QED Claim 1

Claim 2: φ is injective

Proof of Claim 2. By Exercise 13.19 (HW 16, Problem 2), it suffices to show kerφ = {e}. The (⊇)
direction is clear, so we prove (⊆).
Given σ ∈ kerφ, we have φ(σ) = e. By definition of φ, then, for each i ∈ {1, 2, 3, 4}, we must have
σ(i) =

(
φ(σ)

)
(i) = e(i) = i. Since this is true for each i ∈ {1, 2, 3, 4}, we have σ = e. QED Claim 2

Thus, we have constructed the desired injective homomorphism φ : S4 → A6.

BONUS B. (2 points) Let R = Z[
√
11] = {a+ b

√
11 | a, b ∈ Z}, which is a subring of R. Find a unit

u ∈ R× of infinite order in the group of units R×. (And of course, prove all your claims.)

Proof. Let u = 10 + 3
√
11 ∈ R and v = 10− 3

√
11 ∈ R.

Then vu = uv = 100− 11 · 9 = 1, so that u is a unit in R.
On the other hand, viewed as an element of the real line R, we have u > 1, and hence

1 < u < u2 < u3 < · · · ,
so that un ̸= 1 for all n ≥ 1. Thus, the order of u (in the group R×) is o(u) = ∞. QED


