
Math 350, Spring 2025 Professor Rob Benedetto

Rings: Basic Definitions

This handout is a quick reference sheet for basic terminology about rings.

Definition. A ring is a set R together with two binary operations on R, denoted + and ·,
satisfying the following properties:

0. + is indeed a binary operation: for all x, y ∈ R, we have x+ y ∈ R.
1. + is associative: for all x, y, z ∈ R, we have (x+ y) + z = x+ (y + z).
2. + has identity: there exists 0 ∈ R such that for all x ∈ R, we have x+ 0 = 0 + x = x.
3. + has inverses: for all x ∈ R, there exists −x ∈ R such that x+ (−x) = (−x) + x = 0.
4. + is commutative: for all x, y ∈ R, we have x+ y = y + x.
5. · is indeed a binary operation: for all x, y ∈ R, we have x · y ∈ R.
6. · is associative: for all x, y, z ∈ R, we have (x · y) · z = x · (y · z).
7. distributive laws: for all x, y, z ∈ R, we have x · (y + z) = (x · y) + (x · z)

and (x+ y) · z = (x · z) + (y · z).

Notes:
• Officially, (R,+, ·) is a ring, but we often abbreviate, saying simply that R is a ring.
• Properties 0–4 can be summarized by saying that (R,+) is an abelian group.
• The additive identity 0 is always called 0 (or 0R), and never called e.
• The additive inverse −x is always called −x, and never called x−1.
• As in high school algebra, we often write x− y for x+ (−y).
• As in high school algebra, we often omit the symbol ·, but we never omit the symbol +.
• As in high school algbera, in the absence of parentheses, we do the · operation first.
For example: x(y + z) = xy + xz and (x+ y)z = xz + yz.

Notably missing from properties 0–7 above are any claims that the multiplication operation ·
has an identity, has inverses, or is commutative. We have special words for those scenarios:

Definitions. Let R be a ring [implicitly, with operations + and ·].
8. If · is commutative (∀x, y ∈ R, we have xy = yx), we say R is a commutative ring

9. If · has identity (∃1 ∈ R s.t. ∀x, y ∈ R, we have x1 = 1x = x),

we say R is a ring with unity or, for short, a ring with 1
10. If R is a ring with unity, with 1 ̸= 0, and if every nonzero element of R

has a multiplicative inverse (∀x ∈ R∖ {0}, ∃y ∈ R s.t. xy = yx = 1),

then we say R is a division ring or a skew field

For any ring with 1, we write x−1 for the multiplicative inverse of x (if it exists).

11. If R is a commutative division ring (i.e., all of 0–10 hold), we say R is a field

Notes:
• We never call a commutative ring abelian. “Abelian” is reserved for groups only.
• The multiplicative identity 1 ∈ R can also be denoted 1R, or perhaps something like I
(if elements of R are matrices) or id (if elements of R are functions),
but it is usually not called e.

• In a ring R with unity, if x ∈ R has a multiplicative inverse x−1 ∈ R, we say x is a unit
The set of all units in R forms a group, denoted R×. Its identity element is 1.

• Don’t mix up the words unity (the multiplicative identity 1 ∈ R, if it exists) and
and unit (an element x ∈ R having a multiplicative inverse).



When doing algebraic manipulations in rings, properties 0–7 say you can mostly proceed ac-
cording to high school algebra rules, but you have to be careful if you don’t have properties
8–10.
For example, you can’t just replace xy by yx unless you know R is commutative. You also
can’t just “divide by x”; instead, you first need to know that x is a unit (i.e., invertible), and
then you multiply by x−1, specifically on the right or specifically on the left.
So for higher-level manipulations, you may need to adjust your intuitions a little bit. Fortu-
nately, though, the following familiar fact (from class, and also Theorem 16.1(a) in Saracino)
still holds for all rings:

Proposition. Let R be a ring. Then for every x ∈ R, we have 0x = x0 = 0

Notes and Consequences:
• This is why (optional) property 10 only asks for nonzero elements of R to be units.

• If 1 = 0 in R, then R = {0}, i.e., R is the trivial ring

This is why (optional) property 10 requires 1 ̸= 0.
• If 0 is a unit in R, then again R has to be trivial.

As presented in some examples in the book and in class, it can happen in some rings R that
there are nonzero elements x, y ∈ R such that xy = 0. This phenomenon deserves a name:

Definition. Let R be a ring, and let x ∈ R.

• If there exists a nonzero y ∈ R∖ {0} such that either xy = 0 or yx = 0 (or both),

then we say that x is a zero-divisor

• If there exists a positive integer n ≥ 1 such that xn = 0, then we say that x is nilpotent

[Of course, as usual, xn denotes x · x · · · · · x; for example, x3 = x · x · x.]

One more basic definition:

Definition. Let R be a commutative ring with unity,
and also suppose 1 ̸= 0 [i..e, suppose that R is not the trivial ring].
Suppose further that R has no nonzero zero-divisors.
Then we say R is an integral domain or sometimes simply a domain

Notes:
• Every field is an integral domain. [Can you prove that?]
• Not every integral domain is a field. The archetypal example is R = Z (with usual +, ·).
• In fact, the term “integral domain” is meant to suggest the ring Z of integers.

In general, most elements of an integral domain R do not have multiplicative inverses in R.
(See, for example, the archetypal example R = Z of an integral domain.)

However, the fact that the only zero-divisor is 0 itself means that whenever you have an equation
like xy = 0 in an integral domain, you can deduce that either x = 0 or y = 0 (or both), just
by the domain property (and not by multiplying both sides by an inverse).
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