Rings: Basic Definitions

This handout is a quick reference sheet for basic terminology about rings.

Definition. A ring is a set R together with two binary operations on R, denoted + and \cdot , satisfying the following properties:

- 0. + is indeed a binary operation: for all $x, y \in R$, we have $x + y \in R$.
- 1. + is associative: for all $x, y, z \in R$, we have (x + y) + z = x + (y + z).
- 2. + has identity: there exists $0 \in R$ such that for all $x \in R$, we have x + 0 = 0 + x = x.
- 3. + has inverses: for all $x \in R$, there exists $-x \in R$ such that x + (-x) = (-x) + x = 0.
- 4. + is commutative: for all $x, y \in R$, we have x + y = y + x.
- 5. \cdot is indeed a binary operation: for all $x, y \in R$, we have $x \cdot y \in R$.
- 6. \cdot is associative: for all $x, y, z \in R$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- 7. distributive laws: for all $x, y, z \in R$, we have $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 - and $(x+y) \cdot z = (x \cdot z) + (y \cdot z)$.

Notes:

- Officially, $(R, +, \cdot)$ is a ring, but we often abbreviate, saying simply that R is a ring.
- Properties 0–4 can be summarized by saying that (R, +) is an abelian group.
- The additive identity 0 is **always** called 0 (or 0_R), and **never** called *e*.
- The additive inverse -x is always called -x, and never called x^{-1} .
- As in high school algebra, we often write x y for x + (-y).
- As in high school algebra, we often omit the symbol \cdot , but we **never** omit the symbol +.
- As in high school algebra, in the absence of parentheses, we do the \cdot operation first. For example: x(y+z) = xy + xz and (x+y)z = xz + yz.

Notably missing from properties 0–7 above are any claims that the multiplication operation \cdot has an identity, has inverses, or is commutative. We have special words for those scenarios:

Definitions. Let R be a ring [implicitly, with operations + and \cdot].

- 8. If \cdot is commutative ($\forall x, y \in R$, we have xy = yx), we say R is a commutative ring
- 9. If \cdot has identity $(\exists 1 \in R \text{ s.t. } \forall x, y \in R)$, we have x1 = 1x = x), we say R is a ring with unity or, for short, a ring with 1
- 10. If R is a ring with unity, with $1 \neq 0$, and if every **nonzero** element of R has a multiplicative inverse ($\forall x \in R \setminus \{0\}, \exists y \in R \text{ s.t. } xy = yx = 1$), then we say R is a division ring or a skew field For any ring with 1, we write x^{-1} for the multiplicative inverse of x (if it

For any ring with 1, we write x^{-1} for the multiplicative inverse of x (if it exists).

11. If R is a commutative division ring (i.e., all of 0–10 hold), we say R is a field

Notes:

- We never call a commutative ring abelian. "Abelian" is reserved for groups only.
- The multiplicative identity $1 \in R$ can also be denoted 1_R , or perhaps something like I (if elements of R are matrices) or id (if elements of R are functions), but it is usually **not called** e.
- In a ring R with unity, if $x \in R$ has a multiplicative inverse $x^{-1} \in R$, we say x is a unit The set of all units in R forms a group, denoted R^{\times} . Its identity element is 1.
- Don't mix up the words **unity** (the multiplicative identity $1 \in R$, if it exists) and and **unit** (an element $x \in R$ having a multiplicative inverse).

When doing algebraic manipulations in rings, properties 0-7 say you can mostly proceed according to high school algebra rules, but you have to be careful if you don't have properties 8-10.

For example, you can't just replace xy by yx unless you know R is commutative. You also can't just "divide by x"; instead, you first need to know that x is a unit (i.e., invertible), and then you **multiply** by x^{-1} , specifically on the right or specifically on the left.

So for higher-level manipulations, you may need to adjust your intuitions a little bit. Fortunately, though, the following familiar fact (from class, and also Theorem 16.1(a) in Saracino) still holds for all rings:

Proposition. Let R be a ring. Then for every $x \in R$, we have 0x = x0 = 0

Notes and Consequences:

- This is why (optional) property 10 only asks for **nonzero** elements of R to be units.
- If 1 = 0 in R, then $R = \{0\}$, i.e., R is the trivial ring This is why (optional) property 10 requires $1 \neq 0$.
- If 0 is a unit in R, then again R has to be trivial.

As presented in some examples in the book and in class, it **can** happen in some rings R that there are nonzero elements $x, y \in R$ such that xy = 0. This phenomenon deserves a name:

Definition. Let R be a ring, and let $x \in R$.

- If there exists a **nonzero** $y \in R \setminus \{0\}$ such that either xy = 0 or yx = 0 (or both), then we say that x is a zero-divisor
- If there exists a positive integer $n \ge 1$ such that $x^n = 0$, then we say that x is nilpotent

[Of course, as usual, x^n denotes $x \cdot x \cdot \cdots \cdot x$; for example, $x^3 = x \cdot x \cdot x$.]

One more basic definition:

Definition. Let R be a commutative ring with unity, and also suppose $1 \neq 0$ [i..e, suppose that R is not the trivial ring]. Suppose further that R has no nonzero zero-divisors. Then we say R is an integral domain or sometimes simply a domain

Notes:

- Every field is an integral domain. [Can you prove that?]
- Not every integral domain is a field. The archetypal example is $R = \mathbb{Z}$ (with usual $+, \cdot$).
- In fact, the term "integral domain" is meant to suggest the ring \mathbb{Z} of integers.

In general, most elements of an integral domain R do **not** have multiplicative inverses in R. (See, for example, the archetypal example $R = \mathbb{Z}$ of an integral domain.)

However, the fact that the only zero-divisor is 0 itself means that whenever you have an equation like xy = 0 in an integral domain, you can deduce that **either** x = 0 **or** y = 0 (or both), just by the domain property (and **not** by multiplying both sides by an inverse).