
Math 350, Spring 2025 Professor Rob Benedetto

Multiplication of Polynomials is Associative

Let R be a ring. As noted without proof at the bottom of page 193 of Saracino’s book, the set
R[X] of polynomials a0 + a1X + · · · + anX

n with coefficients a0, . . . , an ∈ R forms a ring under
the following operations. Writing f, g ∈ R[X] as

f(X) = a0 + a1X + a2X
2 + · · · =

∑
i≥0

aiX
i and g(X) = b0 + b1X + b2X

2 + · · · =
∑
i≥0

biX
i,

(where we understand each to actually be a finite sum, i.e., all but finitely many ai and bi are
0), then we define the + and · operations on R[X] by

(f + g)(X) =
∑
i≥0

(ai + bi)X
i = (a0 + b0) + (a1 + b1)X + (a2 + b2)X

2 + · · ·

and

(f · g)(X) =
∑
i≥0

( i∑
j=0

ajbi−j

)
X i = a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X

2 + · · · .

Actually proving this claim — that R[X] really is a ring with these two operations — is just a
matter of proving each of the ring axioms (Properties 0–7 in a previous handout). But maybe
I should have put “just” in quotes, since their proofs vary wildly in difficulty. In class I proved
one of the distributive laws (which is of medium difficulty), and in this handout I’ll prove two
others: the associativity of addition (less difficult) and the associativity of multiplication (the
most difficult).
But first, I’ll also note (as Saracino does on page 194) that if R is commutative, then so is
R[X]. Similarly, if R has unity 1, then so does R[X] (and that unity element is 1, viewed as a
polynomial of degree 0). However, even if R is a division ring or field, then R[X] is definitely
not a division ring or field, since the degree 1 polynomial X has no multiplicative inverse.

Addition in R[X] is associative

Proof. Given f, g, h ∈ R[X], write f =
∑

aiX
i, g =

∑
biX

i, h =
∑

ciX
i, where each sum

starts at i = 0, and ai, bi, ci ∈ R with all but finitely many equal to zero. Then

(f + g) + h =

(∑
i≥0

(ai + bi)X
i

)
+
∑
i≥0

ciX
i =

∑
i≥0

(
(ai + bi) + ci

)
X i

=
∑
i≥0

(
ai + (bi + ci)

)
X i =

∑
i≥0

aiX
i +

(∑
i≥0

(bi + ci)X
i

)
= f + (g + h)

QED + is assoc

It turns out to be much harder to prove that multiplication is associative in R[X], because rather
than the coefficient of X i being a simple expression like (ai + bi) + ci = ai + (bi + ci) as in the
proof above, instead a re-indexing of a double sum is required. In anticipation of this, we state
and prove the following lemma not about rings, but about certain sets of pairs of integers:

Lemma. Let k ≥ 0 be an integer. Then{
(i, j) ∈ Z×Z

∣∣ 0 ≤ j ≤ k and 0 ≤ i ≤ j
}
=
{
(i, j) ∈ Z×Z

∣∣ 0 ≤ i ≤ k and i ≤ j ≤ k
}
.

Proof of Lemma. Given k ≥ 0, call the first set Ak and the second set Bk.
Given (i, j) ∈ Z× Z, we have (i, j) ∈ Ak ⇐⇒ 0 ≤ i ≤ j ≤ k ⇐⇒ (i, j) ∈ Bk. QED Lemma



The reason for the Lemma is that, as we’ll see in the proof below, we will need to show that we’ll

want to switch the two sum signs in sum of the form
k∑

j=0

j∑
i=0

to get
k∑

i=0

k∑
j=i

. (And we’ll need

more reindexing from there, but that’s the start.) Of course, what’s going on here, as noted in
the proof of the Lemma, is that both sums are over the set of i, j with 0 ≤ i ≤ j ≤ k. Intuitively,
this is what that set looks like for some small values of k:

k = 0

i

j

k = 1

i

j

k = 2

i

j

k = 3

i

j

So switching the order of summation is very similar to switching the order of the integral signs
in a double integral. With that preface, we are now ready to prove the desired result (which is
also exercise 19.11(b) in Saracino’s book).

Multiplication in R[X] is associative

Proof. Given f, g, h ∈ R[X], write f =
∑

aiX
i, g =

∑
biX

i, h =
∑

ciX
i, where each sum

starts at i = 0, and ai, bi, ci ∈ R with all but finitely many equal to zero.
We make the following claim about certain sums in the ring R:

Claim: For any k ≥ 0, we have
k∑

j=0

(( j∑
i=0

aibj−i

)
ck−j

)
=

k∑
i=0

(
ai

( k−i∑
m=0

bmck−m−i

))
.

Proof of Claim: Given k ≥ 0, by the distributive law, the left side is
k∑

j=0

j∑
i=0

(aibj−i)ck−j.

By the Lemma, this expression equals
k∑

i=0

k∑
j=i

(aibj−i)ck−j. Since (aibj−i)ck−j = ai(bj−ick−j), the

expression is
k∑

i=0

(
ai

k∑
j=i

(bj−ick−j)

)
, by the distributive law.

Finally, re-indexing via m = j − i in the second sum changes that inner sum from
k∑

j=i

(bj−ick−j)

to
k−i∑
m=0

(bmck−m−i). That is, the full expression equals
k∑

i=0

(
ai

( k−i∑
m=0

bmck−m−i

))
, which is the

desired right side. QED Claim

Thus,

(f · g) · h =

(∑
j≥0

( j∑
i=0

aibj−i

)
Xj

)(∑
i≥0

ciX
i

)
=
∑
k≥0

(
k∑

j=0

( j∑
i=0

aibj−i

)
ck−j

)
Xk

=
∑
k≥0

(
k∑

i=0

ai

( k−i∑
m=0

bmck−m−i

))
Xk =

(∑
i≥0

aiX
i

)(∑
j≥0

( j∑
m=0

bmcj−m

)
Xj

)
= f · (g · h)

where the third equality is by the Claim. QED · is assoc
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