
Math 350, Spring 2025 Professor Rob Benedetto

Orders of Permutations

The purpose of this handout is to prove the following theorem, which is stated in Exercise 8.10(a)
in Saracino’s textbook.

Theorem. Let n ≥ 1, and let f ∈ Sn be a permutation. Suppose that f = f1f2 · · · fm is a
product of disjoint cycles f1, f2, . . . , fm ∈ Sn. Then the order of f is given by

o(f) = lcm(o(f1), o(f2), . . . , o(fm)).

Note 1. Recall that f ∈ Sn means that f is a one-to-one and onto function f : X → X, where
X is the set X = {1, 2, . . . , n}. Similarly, each fi ∈ Sn is also a one-to-one and onto function
fi : X → X.

Also, recall that the binary operation on Sn is composition. So the formula f = f1f2 · · · fm in
the statement of the theorem really means f = f1 ◦ f2 ◦ · · · ◦ fm.

Note 2. Recall that a cycle (of length r) in Sn is a permutation of the form g = (x1, x2, . . . , xr),
where x1, . . . , xr ∈ X are distinct elements of X = {1, 2, . . . , n}. (A cycle of length r is
sometimes also called an r-cycle.)

It is a fact that if g ∈ Sn is a cycle of length r, then the order of g is o(g) = r. (This is the
content of Exercise 8.4 in Saracino’s book.)

For example, g = (1, 6, 4) ∈ S7 is a 3-cycle. It is the bijective function fromX = {1, 2, 3, 4, 5, 6, 7}
to itself with g(1) = 6 and g(6) = 4 and g(4) = 1, and with g(x) = x for every other x.

That is, g may be written in long form as g =

(
1 2 3 4 5 6 7
6 2 3 1 5 4 7

)
, and we have o(g) = 3.

Note 3. Recall that two cycles f1 = (x1, x2, . . . , xr) and f2 = (y1, y2, . . . , ys) are said to be
disjoint if the items x1, . . . , xr that appear in the cycle notation for f1 do not overlap at all
with the items y1, . . . , ys that appear in the cycle notation for f2.

For example, (1, 6, 4) and (2, 7) are disjoint cycles. On the other hand, the cycles (1, 6, 4) and
(4, 5) are not disjoint.

More generally, we say that multiple cycles f1, . . . , fm are disjoint if no two of them share an
item in common; that is, if every single pair fi, fj of different cycles in this list are disjoint.

Note 4. Many permutations are not cycles. In fact, when n gets to be at least 7, most elements
of Sn are not cycles.

For example, f = (1, 6, 4)(2, 7) =

(
1 2 3 4 5 6 7
6 7 3 1 5 4 2

)
is not a cycle. Applying f means

rotating the three items {1, 6, 4} are rotated amongst themselves, while separately, the two
items {2, 7} are switched back and forth.

By Note 2 above, the orders of the two disjoint cycles making up f are o((1, 6, 4)) = 3 and
o((2, 7)) = 2. Therefore, the Theorem above says that o(f) = lcm(3, 2) = 6.

I would suggest you try to intuitively understand why this conclusion makes sense, as follows:
f1 = (1, 6, 4) returns everyone to start every 3 iterations, and f2 = (2, 7) does so every 2
iterations. So the first iteration when both of them return everybody to start is the 6th, i.e.,
the lcm of 3 and 2.

Before proving the Theorem, we need the following result, which is Exercise 8.8 in Saracino:



Lemma. Let f1, f2 ∈ Sn be disjoint cycles. Then they commute; that is, f1f2 = f2f1.

Proof of Lemma. Write X = {1, 2, . . . , n}. By hypothesis, we have f1 = (x1, x2, . . . , xr) and
f2 = (y1, y2, . . . , ys) for some x1, . . . , xr, y1, . . . , ys ∈ X all distinct from one another.

Given an arbitrary t ∈ X, we must show f1 ◦ f2(t) = f2 ◦ f1(t). [This is what it means for the
two functions f1 ◦ f2 : X → X and f2 ◦ f1 : X → X to be equal.] We consider three cases.

Case 1: t = xi for some i. Then

f1 ◦ f2(t) = f1(f2(xi)) = f1(xi) = xi+1 = f2(xi+1) = f2(f1(xi)) = f2 ◦ f1(t),
where the second and and fourth equalities are because f2 only moves the yj’s (and hence
f2(xi) = xi and f2(xi+1) = xi+1), and the third and fifth are because f1(xi) = xi+1. Here, if
i = r, we write xr+1 for x1, which is what f1(xr) is.

Case 2: t = yi for some i. Then

f1 ◦ f2(t) = f1(f2(yi)) = f1(yi+1) = yi+1 = f2(yi) = f2(f1(ii)) = f2 ◦ f1(t),
by similar reasoning, where this time in the case i = s, we write ys+1 for y1.

Case 3: t is not any of the xi’s or yi’s. Then f1(t) = t and f2(t) = t, so
f1 ◦ f2(t) = f1(f2(t)) = f1(t) = t = f2(t) = f2(f1(t)) = f2 ◦ f1(t). QED Lemma

Proof of Theorem. Define ni = o(fi), and N = lcm(n1, . . . , nm). Our goal is to show
o(f) = N . So define the following sets of positive integers:

S = {k ≥ 1 | fk = e} and T = {k ≥ 1 |ni divides k for each i = 1, . . . ,m}
By definition of order, we have o(f) = minS; and by definition of lcm, we have N = minT .
Thus, it suffices to show that S = T .

Proving (⊇): By the Lemma, we know that for each i ̸= j, we have fifj = fjfi, i.e., the
disjoint cycles fi and fj commute. Thus, for each integer k ≥ 1, we have

fk = (f1f2 · · · fm)k = fk
1 f

k
2 · · · fk

m (⋆)

[Technically, proving equation (⋆) requires induction — probably in two steps, once on k and
once on m — but I will skip that here.]
In particular, given any k ∈ T , since ni|k for each i = 1, . . . ,m, we therefore have

fk = fk
1 f

k
2 · · · fk

m = ee · · · e = e,

and hence k ∈ S. QED (⊇)

Proving (⊆): Given any k ∈ S and any i = 1, . . . ,m, we claim that ni|k.
Write the cycle fi as fi = (x0, x1, . . . , xni−1), where x0, . . . , xni−1 ∈ X = {1, . . . , n} are all
distinct.
By the Division Algorithm, there are integers q, r ∈ Z such that k = qni+r, with 0 ≤ r ≤ ni−1.
It suffices to prove that r = 0.

Observe that fk
i = f qni+r

i = (fni
i )qf r

i = eqf r
i = f r

i , and hence fk
i (x0) = f r

i (x0) = xr. Therefore,
by equation (⋆) and the fact that fk = e, we have

x0 = e(x0) = fk(x0) = fk
1 f

k
2 · · · fk

i−1f
k
i f

k
i+1 · · · fk

m(x0)

= fk
1 f

k
2 · · · fk

i−1f
k
i (x0) = fk

1 f
k
2 · · · fk

i−1(xr) = xr,

where the fourth and sixth equalities are because fj fixes both x0 and xr for j ̸= i, since the
cycles fi and fj are disjoint. But because 0 ≤ r ≤ ni − 1 and because x0, . . . , xni−1 are all
distinct, it follows from the above equation (which says xr = x0) that r = 0.

That is, k = qni, whence ni|k. Since this is true for all i = 1, . . . ,m, it follows that k ∈ T , as
desired. QED (⊆)

Since S = T , we have o(f) = minS = minT = lcm(n1, . . . , nm) QED
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