
Math 350, Spring 2025 Professor Rob Benedetto

Optional Handout: A Theorem on Norms

Problem 17.18 in Saracino, which I considered but did not actually assign, asks you to count
the number of elements in Z[i]/⟨2 + 2i⟩. The number of elements is 8. Here is one way to
prove that.

Let I = ⟨2 + 2i⟩. We will show that

0 + I, 1 + I, 2 + I, 3 + I, i+ I, 1 + i+ I, 2 + i+ I, 3 + i+ I

are (eight) distinct cosets, and that together they cover all of Z[i].
First, we claim that I is precisely the set

I = {2m+ 2ni : m,n ∈ Z are both odd or both even}.

To prove the (⊆) direction of this claim, given any a+ bi ∈ Z[i], the corresponding element
of I is (a + bi)(2 + 2i) = 2(a − b) + 2(a + b)i. Letting m = a − b and n = a + b, clearly m
and n are either both odd or both even, as desired.
To prove (⊇), given m and n both odd or both even, let a = (n+m)/2 and b = (n−m)/2,
which are both integers. Then 2m+ 2ni = (a+ bi)(2 + 2i); the claim is proven.

Next, we observe that each x+ iy ∈ Z[i] lies in one of the eight cosets listed above.
Indeed, by adding an integer multiple of 2 + 2i, we can change the y to either a 1 or 0, so
that x+ iy lies in the same coset as n or as n+ i, for some integer n ∈ Z.
Then, since 4 = (1 − i)(2 + 2i) ∈ I, we can add an integer multiple of 4 to see that x + iy
lies in the same coset as either k or k + i, where k is one of 0, 1, 2, 3.
Thus, Z[i] is completely covered by the eight cosets above, so that those eight cosets do
indeed comprise all elements of Z[i]/I.
It only remains to show that the eight cosets are distinct. However, any two distinct cosets
representatives from the list of eight above differ by an element a + bi, where either b = 1
and a is one of 0, 1, 2, 3, or else b = 0 and a is one of 1, 2, 3. The only case where both a and
b are even is 2 + 0i; but 2 = 2 · 1 and 0 = 2 · 0, and 1 and 0 do not have the same parity.
By the claim, then, any such a + bi is not in I. Thus, the eight cosets are indeed distinct,
because any two of their representatives differ by an element not in I. QED

I imagine that’s roughly the kind of argument Saracino had in mind when he wrote that
problem. However, it turns out there’s nothing special about the ideal ⟨2 + 2i⟩ except that
one can pull off an ad hoc proof as above. Far more generally, we have the following theorem.

Theorem. Let a+ bi ∈ Z[i] \ {0} be a nonzero Gaussian integer,

and let I = ⟨a+ bi⟩ be the principal ideal in Z[i] that it generates.
1mm] Then the quotient ring Z[i]/I has exactly a2 + b2 elements.

That is, the norm function N(a+bi) = a2+b2 counts the number of elements in the quotient
of Z[i] by the corresponding principal ideal.
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There are a number of ways to prove this theorem. One way is to prove it using ideas we will
soon see in Section 21. The strategy is first to prove the Theorem for irreducible elements
a + bi. [For an integral domain R, we say a ∈ R is irreducible if for any x, y ∈ R such
that a = xy, we have that either x or y is a unit. That is, irreducible elements are the
generalizations of prime numbers.]

It turns out that there are three types of irreducibles in Z[i], classified by their norm. First,
1 + i is an irreducible element; so are all of its unit multiples, namely: 1 + i, 1− i, −1 + i,
and −1− i. (These are precisely the elements of norm 2.)
Second, if p ∈ Z is an odd prime number satisfying p ≡ 3 (mod 4), then p is still an
irreducible when viewed as an element of Z[i]; of course, then, so are −p, pi, and −pi.
(There are precisely the elements of norm p2, for a prime congruent to 3 (mod 4).)
The remaining irreducibles are those elements of the form a+ bi for which a2 + b2 = p is an
odd prime satisfying p ≡ 1 (mod 4); they are precisely the elements of norm p, for a prime
p congruent to 1 (mod 4).

For example, 1 + 2i is an irreducible in Z[i] (because its norm is 12 + 22 = 5, which is an
integer prime congruent to 1 modulo 4). And it’s easy to check that 0, 1, 2, 3, 4 (viewed as
elements of Z[i]) are all in different cosets of I = ⟨1 + 2i⟩, once you prove that I ∩ Z = 5Z.
Furthermore, some similar messing around shows that anything in Z[i] is in the same coset
as one of 0, 1, 2, 3, 4. So Z[i]/I has exactly 5 elements. The proof for any other irreducible
a + bi where a2 + b2 = p is a prime congruent to 1 modulo 4 is similar. It’s even easier
to show (by exactly the same strategy) that Z[i]/⟨1 + i⟩ has exactly 2 = 12 + 12 elements.
Meanwhile, if p ≡ 3 (mod 4) is a prime integer, then N(p) = p2, and it’s not hard to check
that I = {px + pyi : x, y ∈ Z}, so that the p2 coset representatives of the form a + bi with
a, b ∈ {0, 1, . . . , p−1} will do the trick. Thus, assuming you believe all that, we have verified
that the Theorem is true if a+ bi is irreducible.

It also turns out that, just as is true in Z, any element of Z[i] can be written as a product
of irreducibles. So to extend the Theorem to arbitrary (e.g., non-irreducible) a+ bi is “just”
a matter of proving that the function taking a + bi to the order of Z[i]/⟨a + bi⟩ is also
multiplicative. See me if you’re curious about that but can’t figure out the proof.

Actually, we can generalize the previous theorem even further.

Theorem. Let d ∈ Z be an integer that is not a perfect square, and let R = Z[
√
d].

Let a+ b
√
d ∈ R \ {0} be a nonzero element of R, and

let I = ⟨a+ b
√
d⟩ be the principal ideal in R that it generates.

Then the quotient ring R/I has exactly |a2 − db2| elements.

What’s going on here is that, just as we had N : Z[i] → Z given by N(a + bi) = a2 + b2,
we can more generally define a “norm” on Z[

√
d] by N(a + b

√
d) = a2 − db2. Thus, once

again, even if the ring does not have nice factorization properties, the absolute value of the
norm (which is always the norm itself if d is negative) counts the number of elements in the
quotient ring formed by modding out by the associated principal ideal.

FYI: The theorem above can be made even more general, to apply to any order in a number
field (whatever that means). See, for example, Exercises 7.14 and 7.15 of David Cox’s book,
Primes of the Form x2 + ny2.
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