Left and Right Cosets

In this handout, we'll prove the following result:

Theorem. Let G be a group, and let $H \subseteq G$ be a subgroup. Define

```
R = \{ \text{ right cosets of } H \text{ in } G \} and L = \{ \text{ left cosets of } H \text{ in } G \}
```

Then |R| = |L|.

That is, a subgroup always has the same number of right cosets as left cosets.

Note: If G is a *finite* group, then we can prove the above theorem using the ideas from Lagrange's Theorem. Specifically, if G is finite we can write the distinct right cosets of H as

$$Ha_1, Ha_2, \cdots, Ha_k,$$

for some $a_1, \ldots, a_k \in G$, so that |R| = k. But we can also write the left cosets of H as

$$b_1H, b_2H, \cdots, b_\ell H,$$

for some $b_1, \ldots, b_\ell \in G$, so that $|L| = \ell$.

Writing |G| = n and |H| = m, we have $|Ha_i| = |H| = m$ and $|b_jH| = |H| = m$ for every i, j, so we have

$$km = |Ha_1| + \dots + |Ha_k| = |G| = |b_1H| + \dots + |Hb_\ell| = \ell m.$$

Therefore, since $m < \infty$, we may divide both sides by m to obtain $k = \ell$, i.e., |R| = |L|.

However, the above proof only works if G is finite, and the theorem we wish to prove needs to apply to *all* groups G. So the rest of this handout is devoted to the fully general proof, which is actually a little simpler than the above proof!

Proof of Theorem. Define

$$f: R \to L$$
 by $Ha \mapsto a^{-1}H$

It suffices to show that f is a bijective function. [Recall that this is what it means to say two sets have the same cardinality: that there is a bijective function from one to the other.]

Function/Well-Defined: It's not even immediately obvious that f is a function, so we start with that.

More precisely, any element of R is indeed a right coset and hence of the form Ha for some $a \in G$, and therefore $f(Ha) = a^{-1}H$ is indeed a left coset. That is to say, f is *defined*, but we also need to show that f is *well-defined*, since there is usually more than one way to write any given coset.

That is, given a right coset $Ha = Hb \in R$ written two ways — i.e., Ha and Hb are the same right coset even though a and b might be different — we need to prove that f(Ha) = f(Hb). That is, we need to prove that $a^{-1}H = b^{-1}H$.

Well, since Ha = Hb, we have $ab^{-1} \in H$ by the right coset relation. Rewriting $a = (a^{-1})^{-1}$, then, we have $(a^{-1})^{-1}b^{-1} \in H$. But this is the *left* coset relation for a^{-1} and b^{-1} , meaning that $a^{-1}H = b^{-1}H$. That is, (Ha) = f(Hb), as desired.

One-to-one: Given $a, b \in G$ with f(Ha) = f(Hb), then $a^{-1}H = b^{-1}H$, by definition of f. Therefore, $(a^{-1})^{-1}b^{-1} \in H$, by the left coset relation. That is, $ab^{-1} \in H$, so Ha = Hb by the right coset relation, as desired.

Onto: Given a left coset $bH \in L$, then $b \in G$, and hence $Hb^{-1} \in R$ is a right coset. We have $f(Hb^{-1}) = (b^{-1})^{-1}H = bH$, as desired.

Note 1. In the "One-to-One" portion of the proof, please notice that we were given two elements of R (namely Ha and Hb) for which f(Ha) = f(Hb), and our job was to prove that Ha = Hb, i.e., that the original two elements of R were already equal as elements of R.

QED

In particular, our job was *not* to prove the (probably false) statement that a = b; we just needed to prove that the right coset Ha was equal to the right coset Hb, whether or not a and b themselves were actually equal.

Note 2. Did it strike you as funny that the formula for f was $f(Ha) = a^{-1}H$? Why not use a different, simpler formula, like F(Ha) = aH?

To answer that question, it's worth going back through the proof to see what would go wrong if you tried to use $F : R \to L$ by F(Ha) = aH. And the answer is: **that's not even a function**, because it isn't even well-defined.

That is, it's sometimes possible that Ha = Hb but $aH \neq bH$, and hence that we would have $F(Ha) \neq F(Hb)$. That would be bad; a function can't spit out different actual outputs from the same input just because you wrote the input in a slightly different way.

Example. Let $G = S_3$ and let $H = \langle (1,2) \rangle = \{e, (1,2)\}.$ Let a = (2,3) and b = (1,2,3). Then $Ha = \{(2,3), (1,2,3)\} = Hb$ [which you can also see by the right coset relation, since $ab^{-1} = (2,3)(1,3,2) = (1,2) \in H$]. BUT $aH = \{(2,3), (1,3,2)\} \neq \{(1,2,3), (1,3)\} = bH$ [which you can also see by the left coset relation, since $a^{-1}b = (2,3)(1,2,3) = (1,3) \notin H$].

The above example shows that the formula F(Ha) = aH is **not even a function** from R to L, because it is not well-defined.