
Math 350, Spring 2025 Professor Rob Benedetto

Ideals: Basic Definitions and Facts

This handout is a quick reference sheet for terminology and basic facts about ideals. Throughout
this sheet, R is a ring.

Definition. An ideal of R is a subset I ⊆ R satisfying the following properties:

1. I ̸= ∅ [Alternatively: 0R ∈ I.]
2. for all x, y ∈ I, we have x− y ∈ I

[Alternatively: for all x, y ∈ I, we have x+ y ∈ I and −x ∈ I.]
3. for all x ∈ I and all r ∈ R, we have rx ∈ I and xr ∈ I.

Notes/Facts (suggestion: for practice, prove some or all of the claims here):
• Conditions (1) and (2) above are equivalent to saying that (I,+) is a subgroup of (R,+).
(And informally, I call (3) the “sticky property”.)

• The full ring I = R is an ideal of R, called the improper ideal of R.

• The set I = {0R} is an ideal of R, called the trivial ideal of R.
• If R = F is a field, then the only ideals of F are the trivial ideal and the improper ideal.
• A subring of R is a subset S ⊆ R such that (S,+, ·) is itself a ring. By Theorem 17.1,

a subset S ⊆ R is a subring if and only if S satisfies (1) and (2) above and
is closed under · (i.e., for all x, y ∈ S, we have xy ∈ S).
However, the sticky property (3) above is stronger than being closed under ·,
since only one of the two multiplicands has to belong to the subset.
So all ideals of R are subrings of R, but not conversely.

• Warning: If S ⊆ R is a subring, and if I ⊆ S is an ideal of S, then I might or might not
be an ideal of R. After all, the sticky property allows the second multiplicand r to be
anything in the whole ring; so if you make the ring bigger, you might break that property.
For example, 2Z is an ideal of the ring Z, but it is not an ideal of the larger ring Q.

Definitions. Let I ⊊ R be a proper ideal (of R). We say:

1. I is a prime ideal of R if:

for all x, y ∈ R such that xy ∈ I, we have x ∈ I or y ∈ I (or both).

2. I is a maximal ideal of R if there are no ideals J of R such that I ⊊ J ⊊ R.

Notes:
• Don’t forget that the above definitions both require that I is a proper ideal.
That is, the full ring R is neither a prime ideal nor a maximal ideal of R.

• The condition for being a prime ideal is essentially the converse of the sticky property.
Thus, a prime ideal of R is a proper subset I ⊊ R that is a subgroup under + and such
that for all x, y ∈ R, we have xy ∈ I if and only if either x ∈ I or y ∈ I (or both).

• The condition for being a maximal ideal can be rephrased as:
For any ideal J of R with I ⊊ J ⊆ R, we have J = R.

• Fact: For a nontrivial ring R, the trivial ideal {0R} is prime if and only if
R has no nonzero zero-divisors. [Suggestion: prove that!]

• Fact: If R is a commutative ring with unity, and if I ⊆ R is a maximal ideal of R,
then I is also a prime ideal of R. [Harder to prove; see Corollary 17.8]



As I mentioned in class, subrings of a ring are (sort of) analogous to subgroups of a group,
whereas ideals are (sort of) analogous to normal subgroups. This analogy is especially relevant
to forming quotient rings. Just as we need a normal subgroup to take a quotient group, it
turns out that we need an ideal to form a quotient ring, as follows.

Definition/Theorem. Let R be a ring, and let I ⊆ R be an ideal.

Define R/I = {I + a | a ∈ R} (i.e., the set of (right) cosets I under +.)

Define operations + and · on R/I by: for all a, b ∈ R,

(I + a) + (I + b) = I + (a+ b) and (I + a) · (I + b) = I + (a · b)

Then R/I is a ring, called the quotient ring (of R modulo I). Its additive identity is I+0R.
Moreover:

• If R has unity 1R, then R/I has unity I + 1R.
• If R is commutative, then R/I is commutative.

Warning: The elements of R/I are ADDITIVE cosets I + a.

NEVER write Ia or Ib for an element of R/I; there must ALWAYS be a + sign.

Theorem. Let R be a commutative ring with unity, and let I ⊆ R be an ideal. Then:

1. I is a prime ideal of R if and only if R/I is an integral domain.

2. I is a maximal ideal of R if and only if R/I is a field.

See Video 33 or Corollary 17.6 for the proof of statement (1). See Video 34 or Theorem 17.7
for the proof of statement (2). Both proofs are mainly exercises in the (admittedly confusing)
definitions of prime ideals, maximal ideals, integral domains, fields, and quotient rings, as well
as manipulating cosets; but the proof of (2) has extra difficulties as well. It’s good practice to
learn how to prove (1).

We conclude with an unrelated set of definitions that we actually could have presented earlier.
(In fact, I did present them earlier in class.)

Definition. Let R be a commutative ring with unity, and let a ∈ R.

The principal ideal generated by a is aR = {ar | r ∈ R}

Theorem. Let R be a commutative ring with unity, and let a ∈ R. The principal ideal aR
is indeed an ideal of R, and a ∈ aR. Moreover, aR is the smallest ideal of R containing a, by
which we mean that for any ideal I of R with the property that a ∈ I, we have aR ⊆ I.

Notes/Facts
• The principal ideal aR is sometimes denoted ⟨a⟩ or (a).
• Since we assumed R is commutative, we have aR = Ra, where Ra = {ra | r ∈ R}.
• Earlier we noted that if R is a field, then its only ideals are {0R} and R itself. Well, if
R is a commutative ring with unity, the converse is also true: that is, if R is a
commutative ring with unity whose only ideals are {0R} and R, then R is a field.
Can you prove that? (Hint: to find a−1 for a ̸= 0R, first prove that 1R ∈ aR.)

Definition. If R is an integral domain with the property that all of its ideals are principal
ideals, then we say that R is a principal ideal domain or PID for short.
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