Math 350, Spring 2025 Professor Rob Benedetto
Groups of Order Six

In this handout, we’ll use Lagrange’s Theorem to prove:

’ Theorem. Let G be a group of order 6. Then G is isomorphic either to C or to Sg.‘

(That is, up to isomorphism, there are only two groups of order 6. We haven’t formally defined
“isomorphic” yet, so that portion of the proof will be a little handwavy for now.)

To this end, we will follow the outline suggested by Exercise 10.14 in Saracino’s textbook.

Throughout this handout, let G be an arbitrary group of order 6‘

’Lemma 1. If G has an element of order 6, then G is cyclic. ‘

Proof of Lemma 1. If there is some x € G with o(x) = 6, then the cyclic subgroup (x) C G
has o(x) = 6 elements, and hence (x) = G. Thus, G is cyclic, generated by z. QED Lemma 1

’Lemma 2. If GG is not cyclic, then all elements of G have order 1, 2, or 3.‘

Proof of Lemma 2. By Theorem 10.4, every = € G has order dividing 6, and thus o(z) is 1,
2, 3, or 6. By part (a), since G is not cyclic, we cannot have o(x) = 6, and thus o(z) is 1, 2, or
3. QED Lemma 2

Lemma 3. If GG is not cyclic, then there is some a € G of order 3.‘

Proof of Lemma 3. Suppose, toward contradiction, that G has no elements of order 3. Then
by Lemma 2, all elements of G have order 1 or 2. That is, g*> = e for all ¢ € G. By Problem 3.11,
G is abelian.

Pick z € G~ {e} and y € G \ {e,z}, so that e,z,y € G are three distinct elements. Define
H ={e,z,y,zy}. We claim that H is a subgroup of G of order 4.

To see that |H| = 4, we need to show that all four elements we listed are distinct; we already
saw that e, z,y are distinct. If xy = x, then y = e by cancellation, a contradiction. If xy = y,
then x = e, another contradiction. If zy = e, then multiplying by z, we have y = x since
2% = e, again giving a contradiction. Thus, H does indeed have four elements.

To see that H is a group, note that it is nonempty and (since g?> = e for all g € G) every
element is its own inverse, and hence H is closed under inverses. It suffices to show that H is
closed under the operation.

Given g,h € H, if g = e, then gh = h € H; similarly if h =e. If g = h, then gh = ¢* = e € H.
The only remaining cases are that g, h are two distinct elements of {z,y, xy}. Recalling that
G is abelian, we have yr = zy € H, and (zy)xr = z(xy) = ey =y € H, and y(zy) = (xy)y =
xe =x € H. Thus, H is indeed closed under the operation, proving our claim that H C GG is a
subgroup of order 4.

By Lagrange’s Theorem, we must have |H|||G|, and hence 4|6, a contradiction. Thus, our
assumption that G has no elements of order 3 is false. That is, there is some a € G with
o(a) = 3. QED Lemma 3

For Lemmas 4-6, let us make the following assumptions:

G is not cyclic, a € G has order 3, and fix b € G \ (a) (%)




Lemma 4. Assume (x). Then e, a, a?, b, ab, a*b are all distinct.

2 are all distinct.

Proof of Lemma 4. Since (a) has o(a) = 3 elements, we know that e, a,a
By our choice of b, we know that b is also distinct from all three of e, a, a?.
In addition, the three elements b, ab, a®b must be different from one another; otherwise, multi-
plying all three on the right by b=!, we would have e, a, a® not all distinct, and contradiction.
It remains to show that each of ab and a?b is distinct from each of e, a, a®.

If ab = e, then multiplying by a? on the left gives b = a?, a contradiction.

If ab = a, then multiplying by a? on the left gives b = e, a contradiction.

If ab = a?, then multiplying by a? on the left gives b = a, a contradiction.

Similarly, if a%b equals one of e, a, or a?, then multiplying on the right by a gives b is one of a,
a?, or e, a contradiction.

Thus, all six of e, a, a?, b, ab, a®b are distinct. QED Lemma 4

Lemma 5. Assume (). Then o(a’b) = 2 for all j = 0,1, 2.

Proof of Lemma 5. We claim that 0> = e, proceeding by contradiction. If b* = a’b for
some j = 0,1, 2, then multiplying on the right by b~! gives b = o/, a contradiction. If i* = a,
then b3 = ab # e, and hence o(b) # 1,2, 3, contradicting Lemma 2. Similarly, if * = a?, then
b3 = a?b # e, again contradicting Lemma 2. By process of elimination, then, b*> = e, as claimed.
Since b # e and b* = e, we have o(b) = 2.

Going back to assumption (%), recall that b was chosen arbitrarily from the set G \ (a), and
through Lemmas 4 and 5 we deduced that o(b) = 2. Thus, we really proved a “for all” statement,
that every element of G \ (a) has order 2. QED Lemma 5

Lemma 6. Assume (x). Then ba = a?b and ba® = ab.

Proof of Lemma 6. Since o(ab) = 2, we have abab = e, and hence ba = a~'b~! = b, where
the last equality is because o(a) = 3 and o(b) = 2.
Finally, ba*? = baa = a*ba = a*a®b = ab. QED Lemma 6

Proof of Theorem. Case 1: G has an element x of order 6. Then by Lemma 1, GG is cyclic.
(And by renaming 7 as j for each j = 0,1,...,5, we see that G is isomorphic to Cg.)

Case 2: G has no element of order 6. Then by Lemma 3, there is some a € G of order 3.
Choose b € G\ (a). By Lemma 4, the six elements of G are {a't’ |i € {0,1,2} and j € {0,1}},
and Lemmas 5 and 6 show us that the multiplication table for G must be

* e a a® b ab a’b
e e a a® b ab a’b
a a a® e ab a’b b
a? a® e a a’b b ab
b b a2b ab e [a]
ab ab b] a’b a e
a?b a’b b] a? [a] e

where the boxed values are from computations like (ab)(a?b) = a(ba?®)b = a(ab)b = a*b* = a.

Replacing a with the 3-cycle (1,2,3) € Sg, and b with the 2-cycle (1, 2), the above multiplication
table coincides with that of Ss, with a? = (1, 3,2), with ab = (1, 3), and with a*b = (2,3). QED



