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Groups of Order Six

In this handout, we’ll use Lagrange’s Theorem to prove:

Theorem. Let G be a group of order 6. Then G is isomorphic either to C6 or to S3.

(That is, up to isomorphism, there are only two groups of order 6. We haven’t formally defined
“isomorphic” yet, so that portion of the proof will be a little handwavy for now.)

To this end, we will follow the outline suggested by Exercise 10.14 in Saracino’s textbook.

Throughout this handout, let G be an arbitrary group of order 6

Lemma 1. If G has an element of order 6, then G is cyclic.

Proof of Lemma 1. If there is some x ∈ G with o(x) = 6, then the cyclic subgroup ⟨x⟩ ⊆ G
has o(x) = 6 elements, and hence ⟨x⟩ = G. Thus, G is cyclic, generated by x. QED Lemma 1

Lemma 2. If G is not cyclic, then all elements of G have order 1, 2, or 3.

Proof of Lemma 2. By Theorem 10.4, every x ∈ G has order dividing 6, and thus o(x) is 1,
2, 3, or 6. By part (a), since G is not cyclic, we cannot have o(x) = 6, and thus o(x) is 1, 2, or
3. QED Lemma 2

Lemma 3. If G is not cyclic, then there is some a ∈ G of order 3.

Proof of Lemma 3. Suppose, toward contradiction, that G has no elements of order 3. Then
by Lemma 2, all elements of G have order 1 or 2. That is, g2 = e for all g ∈ G. By Problem 3.11,
G is abelian.
Pick x ∈ G ∖ {e} and y ∈ G ∖ {e, x}, so that e, x, y ∈ G are three distinct elements. Define
H = {e, x, y, xy}. We claim that H is a subgroup of G of order 4.
To see that |H| = 4, we need to show that all four elements we listed are distinct; we already
saw that e, x, y are distinct. If xy = x, then y = e by cancellation, a contradiction. If xy = y,
then x = e, another contradiction. If xy = e, then multiplying by x, we have y = x since
x2 = e, again giving a contradiction. Thus, H does indeed have four elements.
To see that H is a group, note that it is nonempty and (since g2 = e for all g ∈ G) every
element is its own inverse, and hence H is closed under inverses. It suffices to show that H is
closed under the operation.
Given g, h ∈ H, if g = e, then gh = h ∈ H; similarly if h = e. If g = h, then gh = g2 = e ∈ H.
The only remaining cases are that g, h are two distinct elements of {x, y, xy}. Recalling that
G is abelian, we have yx = xy ∈ H, and (xy)x = x(xy) = ey = y ∈ H, and y(xy) = (xy)y =
xe = x ∈ H. Thus, H is indeed closed under the operation, proving our claim that H ⊆ G is a
subgroup of order 4.
By Lagrange’s Theorem, we must have |H|

∣∣|G|, and hence 4|6, a contradiction. Thus, our
assumption that G has no elements of order 3 is false. That is, there is some a ∈ G with
o(a) = 3. QED Lemma 3

For Lemmas 4–6, let us make the following assumptions:

G is not cyclic, a ∈ G has order 3, and fix b ∈ G∖ ⟨a⟩ (⋆)



Lemma 4. Assume (⋆). Then e, a, a2, b, ab, a2b are all distinct.

Proof of Lemma 4. Since ⟨a⟩ has o(a) = 3 elements, we know that e, a, a2 are all distinct.
By our choice of b, we know that b is also distinct from all three of e, a, a2.
In addition, the three elements b, ab, a2b must be different from one another; otherwise, multi-
plying all three on the right by b−1, we would have e, a, a2 not all distinct, and contradiction.
It remains to show that each of ab and a2b is distinct from each of e, a, a2.
If ab = e, then multiplying by a2 on the left gives b = a2, a contradiction.
If ab = a, then multiplying by a2 on the left gives b = e, a contradiction.
If ab = a2, then multiplying by a2 on the left gives b = a, a contradiction.
Similarly, if a2b equals one of e, a, or a2, then multiplying on the right by a gives b is one of a,
a2, or e, a contradiction.
Thus, all six of e, a, a2, b, ab, a2b are distinct. QED Lemma 4

Lemma 5. Assume (⋆). Then o(ajb) = 2 for all j = 0, 1, 2.

Proof of Lemma 5. We claim that b2 = e, proceeding by contradiction. If b2 = ajb for
some j = 0, 1, 2, then multiplying on the right by b−1 gives b = aj, a contradiction. If b2 = a,
then b3 = ab ̸= e, and hence o(b) ̸= 1, 2, 3, contradicting Lemma 2. Similarly, if b2 = a2, then
b3 = a2b ̸= e, again contradicting Lemma 2. By process of elimination, then, b2 = e, as claimed.
Since b ̸= e and b2 = e, we have o(b) = 2.
Going back to assumption (⋆), recall that b was chosen arbitrarily from the set G ∖ ⟨a⟩, and
through Lemmas 4 and 5 we deduced that o(b) = 2. Thus, we really proved a “for all” statement,
that every element of G∖ ⟨a⟩ has order 2. QED Lemma 5

Lemma 6. Assume (⋆). Then ba = a2b and ba2 = ab.

Proof of Lemma 6. Since o(ab) = 2, we have abab = e, and hence ba = a−1b−1 = a2b, where
the last equality is because o(a) = 3 and o(b) = 2.
Finally, ba2 = baa = a2ba = a2a2b = ab. QED Lemma 6

Proof of Theorem. Case 1: G has an element x of order 6. Then by Lemma 1, G is cyclic.
(And by renaming xj as j for each j = 0, 1, . . . , 5, we see that G is isomorphic to C6.)

Case 2: G has no element of order 6. Then by Lemma 3, there is some a ∈ G of order 3.
Choose b ∈ G∖ ⟨a⟩. By Lemma 4, the six elements of G are {aibj | i ∈ {0, 1, 2} and j ∈ {0, 1}},
and Lemmas 5 and 6 show us that the multiplication table for G must be

* e a a2 b ab a2b
e e a a2 b ab a2b
a a a2 e ab a2b b
a2 a2 e a a2b b ab

b b a2b ab e a2 a

ab ab b a2b a e a2

a2b a2b ab b a2 a e

where the boxed values are from computations like (ab)(a2b) = a(ba2)b = a(ab)b = a2b2 = a2.

Replacing a with the 3-cycle (1, 2, 3) ∈ S3, and b with the 2-cycle (1, 2), the above multiplication
table coincides with that of S3, with a2 = (1, 3, 2), with ab = (1, 3), and with a2b = (2, 3). QED


