Groups of Order Six

In this handout, we'll use Lagrange's Theorem to prove:

Theorem. Let G be a group of order 6. Then G is isomorphic either to C_6 or to S_3 .

(That is, up to isomorphism, there are only two groups of order 6. We haven't formally defined "isomorphic" yet, so that portion of the proof will be a little handwavy for now.)

To this end, we will follow the outline suggested by Exercise 10.14 in Saracino's textbook.

Throughout this handout, let G be an arbitrary group of order 6

Lemma 1. If G has an element of order 6, then G is cyclic.

Proof of Lemma 1. If there is some $x \in G$ with o(x) = 6, then the cyclic subgroup $\langle x \rangle \subseteq G$ has o(x) = 6 elements, and hence $\langle x \rangle = G$. Thus, G is cyclic, generated by x. QED Lemma 1

Lemma 2. If G is not cyclic, then all elements of G have order 1, 2, or 3.

Proof of Lemma 2. By Theorem 10.4, every $x \in G$ has order dividing 6, and thus o(x) is 1, 2, 3, or 6. By part (a), since G is not cyclic, we cannot have o(x) = 6, and thus o(x) is 1, 2, or 3. QED Lemma 2

Lemma 3. If G is not cyclic, then there is some $a \in G$ of order 3.

Proof of Lemma 3. Suppose, toward contradiction, that G has no elements of order 3. Then by Lemma 2, all elements of G have order 1 or 2. That is, $g^2 = e$ for all $g \in G$. By Problem 3.11, G is abelian.

Pick $x \in G \setminus \{e\}$ and $y \in G \setminus \{e, x\}$, so that $e, x, y \in G$ are three distinct elements. Define $H = \{e, x, y, xy\}$. We claim that H is a subgroup of G of order 4.

To see that |H| = 4, we need to show that all four elements we listed are distinct; we already saw that e, x, y are distinct. If xy = x, then y = e by cancellation, a contradiction. If xy = y, then x = e, another contradiction. If xy = e, then multiplying by x, we have y = x since $x^2 = e$, again giving a contradiction. Thus, H does indeed have four elements.

To see that H is a group, note that it is nonempty and (since $g^2 = e$ for all $g \in G$) every element is its own inverse, and hence H is closed under inverses. It suffices to show that H is closed under the operation.

Given $g, h \in H$, if g = e, then $gh = h \in H$; similarly if h = e. If g = h, then $gh = g^2 = e \in H$. The only remaining cases are that g, h are two distinct elements of $\{x, y, xy\}$. Recalling that G is abelian, we have $yx = xy \in H$, and $(xy)x = x(xy) = ey = y \in H$, and $y(xy) = (xy)y = xe = x \in H$. Thus, H is indeed closed under the operation, proving our claim that $H \subseteq G$ is a subgroup of order 4.

By Lagrange's Theorem, we must have |H|||G|, and hence 4|6, a contradiction. Thus, our assumption that G has no elements of order 3 is false. That is, there is some $a \in G$ with o(a) = 3. QED Lemma 3

For Lemmas 4–6, let us make the following assumptions:

$$G \text{ is not cyclic, } a \in G \text{ has order 3, and fix } b \in G \smallsetminus \langle a \rangle$$
 (*)

Lemma 4. Assume (\star) . Then e, a, a^2, b, ab, a^2b are all distinct.

Proof of Lemma 4. Since $\langle a \rangle$ has o(a) = 3 elements, we know that e, a, a^2 are all distinct. By our choice of b, we know that b is also distinct from all three of e, a, a^2 .

In addition, the three elements b, ab, a^2b must be different from one another; otherwise, multiplying all three on the right by b^{-1} , we would have e, a, a^2 not all distinct, and contradiction. It remains to show that each of ab and a^2b is distinct from each of e, a, a^2 .

If ab = e, then multiplying by a^2 on the left gives $b = a^2$, a contradiction.

If ab = a, then multiplying by a^2 on the left gives b = e, a contradiction.

If $ab = a^2$, then multiplying by a^2 on the left gives b = a, a contradiction.

Similarly, if a^2b equals one of e, a, or a^2 , then multiplying on the right by a gives b is one of a, a^2 , or e, a contradiction.

Thus, all six of e, a, a^2, b, ab, a^2b are distinct.

QED Lemma 4

Lemma 5. Assume (\star) . Then $o(a^j b) = 2$ for all j = 0, 1, 2.

Proof of Lemma 5. We claim that $b^2 = e$, proceeding by contradiction. If $b^2 = a^j b$ for some j = 0, 1, 2, then multiplying on the right by b^{-1} gives $b = a^j$, a contradiction. If $b^2 = a$, then $b^3 = ab \neq e$, and hence $o(b) \neq 1, 2, 3$, contradicting Lemma 2. Similarly, if $b^2 = a^2$, then $b^3 = a^2 b \neq e$, again contradicting Lemma 2. By process of elimination, then, $b^2 = e$, as claimed. Since $b \neq e$ and $b^2 = e$, we have o(b) = 2.

Going back to assumption (\star) , recall that b was chosen arbitrarily from the set $G \smallsetminus \langle a \rangle$, and through Lemmas 4 and 5 we deduced that o(b) = 2. Thus, we really proved a "for all" statement, that *every* element of $G \smallsetminus \langle a \rangle$ has order 2. QED Lemma 5

Lemma 6. Assume (\star) . Then $ba = a^2b$ and $ba^2 = ab$.

Proof of Lemma 6. Since o(ab) = 2, we have abab = e, and hence $ba = a^{-1}b^{-1} = a^2b$, where the last equality is because o(a) = 3 and o(b) = 2. Finally, $ba^2 = baa = a^2ba = a^2a^2b = ab$. QED Lemma 6

Proof of Theorem. Case 1: G has an element x of order 6. Then by Lemma 1, G is cyclic. (And by renaming x^j as j for each j = 0, 1, ..., 5, we see that G is isomorphic to C_6 .)

Case 2: *G* has no element of order 6. Then by Lemma 3, there is some $a \in G$ of order 3. Choose $b \in G \setminus \langle a \rangle$. By Lemma 4, the six elements of *G* are $\{a^i b^j \mid i \in \{0, 1, 2\}$ and $j \in \{0, 1\}\}$, and Lemmas 5 and 6 show us that the multiplication table for *G* must be

*	e	a	a^2	b	ab	a^2b
e	e	a	a^2	b	ab	a^2b
a	a	a^2	e	ab	a^2b	b
a^2	a^2	e	a	a^2b	b	ab
b	b	a^2b	ab	e	a^2	a
ab	ab	b	a^2b	a	e	a^2
a^2b	a^2b	ab	b	a^2	a	e

where the boxed values are from computations like $(ab)(a^2b) = a(ba^2)b = a(ab)b = a^2b^2 = a^2$.

Replacing a with the 3-cycle $(1, 2, 3) \in S_3$, and b with the 2-cycle (1, 2), the above multiplication table coincides with that of S_3 , with $a^2 = (1, 3, 2)$, with ab = (1, 3), and with $a^2b = (2, 3)$. QED