Functions: Fundamental Definitions and Facts

This handout should be mostly review, but some of it may be new to you. It covers much of the material in Section 7 of Saracino.

Definition. Let S, T be sets. A function $f : S \to T$ assigns, to each $s \in S$, a unique $t \in T$. In that case, we write f(s) = t, or $f : s \mapsto t$. That is, $\forall s \in S, \exists ! t \in T \text{ s.t. } f(s) = t$

The set S is called the **domain** of f, and the set T is called the **codomain** or **target** set of f.

(Warning: do not call T the "range" of T, as that means something different; see below.)

Actually, the above definition is a little informal. See Video 17 for a fully rigorous definition; but in practice, we will use the above informal definition, which is more intuitive.

For both definitions, the \exists ! statement — i.e., "there exists a unique" — in the box above is what really matters. To clarify things in practice, if we have a rule $f: S \to T$ which were are not yet certain is truly a function, we sometimes use the following terminology:

- To say $f: S \to T$ is defined means $\forall s \in S, \exists t \in T \text{ s.t. } f(s) = t$
- To say $f: S \to T$ is well-defined means $\forall s_1, s_2 \in S$, if $s_1 = s_2$, then $f(s_1) = f(s_2)$

So a function, then, is a rule/recipe $f: S \to T$ that is **both** defined and well-defined.

Example: $f : \mathbb{Z} \to \mathbb{Q}$ by $f(x) = \frac{1}{x}$ is **not defined** because $0 \in \mathbb{Z}$ is in the (supposed) domain but f(0) -

because $0 \in \mathbb{Z}$ is in the (supposed) domain, but f(0) = 1/0 doesn't make sense.

Example:
$$f : \mathbb{Q} \to \mathbb{Z}$$
 by $f\left(\frac{m}{n}\right) = m$ is not well-defined
because $\frac{3}{5} = \frac{6}{10}$ but $f\left(\frac{3}{5}\right) = 3 \neq 6 = f\left(\frac{6}{10}\right)$.

Definition. Let S, T be sets, and let $f : S \to T$ be a function.

1 The set $\{f(s) | s \in S\} = \{t \in T | \exists s \in S \text{ s.t. } f(s) = t\}$, which is a subset of T, is called the **image** of f (or the **range** of f) and is denoted f(S) or im(f).

2 We say f is **onto**, or **surjective**, if f(S) = T, i.e., if $\forall t \in T, \exists s \in S \text{ s.t. } f(s) = t$

3 We say f is **one-to-one**, or **injective**, if $\forall s_1, s_2 \in S$ s.t. $f(s_1) = f(s_2)$, we have $s_1 = s_2$

4 We say f is **bijective** if it is both injective and surjective.

5 The **identity function** on S is the function $id_S : S \to S$ given by $id_S(x) = x$ for all $x \in S$.

Note that the identity function $id_S : S \to S$, sometimes denoted i_S or 1_S , is indeed a function, and it is bijective.

Note also both the similarities **and** the differences between:

- the definitions of "f is defined" and "f is onto"
- the definitions of "f is well-defined" and "f is one-to-one."

In particular, note that for well-defined, the implication goes one direction, but for one-to-one, it goes the other direction.

What does it mean to say $f_1 = f_2$? It's always important in mathematics to know *precisely* what we mean when we say two objects are equal.

For functions: if f_1 and f_2 are functions, we say/write $f_1 = f_2$ if:

- the domain S of f_1 is the same as the domain of f_2 (in the sense of equality of sets), and
- for all $s \in S$ [i.e., for all s in this common domain], we have $f_1(s) = f_2(s)$.

Definition. Let S, T, U be sets, and let $f : S \to T$ and $g : T \to U$ be functions. In this situation — where the domain of g is the same as the target set of f — we define the **composition** of g and f, denoted $g \circ f$, to be the function

$$g \circ f : S \to U$$
 given by $g \circ f(s) = g(f(s))$

We may read $g \circ f$ aloud as "g composed with f" or "g of f" or "g after f."

Definition. Let S, T be sets, and let $f : S \to T$ be a function. We say f is **invertible** if there exists a function $g : T \to S$ such that $\boxed{f \circ g = \mathrm{id}_T \text{ and } g \circ f = \mathrm{id}_S}$

that is, if both:

- for all $s \in S$, we have g(f(s)) = s, and
- for all $t \in T$, we have f(g(t)) = t.

In that case, g is called the **inverse function** of f, or simply the **inverse** of f, and we write $f^{-1} = g$.

The following result is standard, but I recommend you try to prove it yourself; it is good practice both with writing if-and-only-if proofs, and with working with the various definitions in this handout. (The informal discussion on page 62 of Saracino may also be helpful.)

Proposition. Let S, T be sets, and let $f: S \to T$ be a function. Then

f is invertible **if and only if** f is bijective.

Moreover, in that case, the inverse function $f^{-1}: T \to S$ is given by: $f^{-1}(t) =$ the unique $s \in S$ such that f(s) = t

for all $t \in T$.

Here's another standard result about inverses. Again, I encourage you to try to prove it yourself. (It may remind you of Theorems 3.2, 3.3, and 3.4 about groups!)

Proposition. Let S, T, U be sets, and let $f : S \to T$ and $g : T \to U$ be **invertible** functions. **1** The inverse of f is unique. That is, if $F : T \to S$ is a function such that $F \circ f = \mathrm{id}_S$ and $f \circ F = \mathrm{id}_T$, then we have $F = f^{-1}$.

2 The inverse function f^{-1} is also invertible, and its inverse is $(f^{-1})^{-1} = f$.

3 The composition $g \circ f$ is also invertible, and its inverse is $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Finally, composition of functions is associative; again, try to prove the following result yourself: **Proposition**. Let S, T, U, V be sets, and let $f : S \to T, g : T \to U$, and $h : U \to V$ be functions. Then $h \circ (g \circ f) = (h \circ g) \circ f$.

[Note: $h \circ (g \circ f)$ and $(h \circ g) \circ f$ are functions from S to V. Proving they are equal means proving that for all $s \in S$, their values at s agree.]