
Math 350, Spring 2025 Professor Rob Benedetto

Optional Handout: Cauchy’s Theorem

The point of this handout is to use the class equation (Theorem 10.9 in Saracino) to prove
the following result:

Cauchy’s Theorem: Let G be a finite group; write n = |G|. Let p ≥ 2 be a prime number.
If p | n, then G contains an element of order p.

Some notes:

1. The conclusion “G contains an element of order p” is the same as “G contains a
subgroup of order p”. (Given the element a ∈ G, the subgroup is ⟨a⟩. Conversely, by
Theorem 10.5, any subgroup H ⊆ G of order p must contain an element of order p.)

2. Section 15 of Saracino covers the Sylow Theorems, which say something far more
general than Cauchy says: for starters, if pr divides n, then G contains a subgroup of
order pr. (The Sylow Theorems go on to say, when the exponent r is as big as possible,
that all such subgroups are conjugate to one another. They also put some restrictions
on how many such subgroups there are.) But Cauchy’s Theorem is definitely easier to
prove. In addition, the usual proofs of the Sylow Theorems use Cauchy’s Theorem.

To prove Cauchy’s Theorem, we’ll have to assume the following partial result:

Lemma. Cauchy’s Theorem is true for finite abelian groups.

This Lemma is Theorem 11.7 in the book. It’s also proven on (Optional) Video 27.

Proof of Cauchy. We’ll do “strong” induction on n. That is, the statement for n is:
“For any integer m with 1 ≤ m ≤ n, if G is a group of order m and if p|m, then G has an
element of order p.”

For n = 1, the only m between 1 and n is 1 itself, and p ∤ 1. Therefore, the statement is
vacuously true (i.e., there are no counterexamples because the hypothesis that p|m is never
satisfied).

Now given n ≥ 2, assume that the statement is true for n− 1, and we’ll prove it for n.

Given 1 ≤ m ≤ n, note first that if 1 ≤ m ≤ n − 1, the conclusion is true by the inductive
hypothesis (that the statement is true for n − 1). Thus, we only need to consider the case
m = n.

So, we may assume we are given a group G with |G| = n and with p|n.

[We need to prove that G has an element of order p. Remember, we are allowed to assume
the inductive hypothesis: that any group of strictly smaller order divisible by p has such an
element.]



Let a1, . . . , ak ∈ G be representatives of all the distinct conjugacy classes of G that have
more than one element.

[Note: it is possible that k = 0, i.e. that there are no such conjugacy classes.]

For each such ai, consider the centralizer subgroup Z(ai) ⊆ G. We claim that Z(ai) ̸= G.

To see this, note that if Z(ai) = G, then ai ∈ Z(G). (That is, ai commutes with all elements
of G). Thus, the conjugacy class of ai consists only of ai itself. However, we assumed ai was
in a conjugacy class with at least two elements. We have a contradiction, thus proving the
claim.

Hence, 1 ≤ |Z(ai)| ≤ n− 1 for all i = 1, . . . , k. We consider two cases.

Case 1. Suppose that |Z(ai)| is divisible by p for some i. Then Z(ai) is a group of order
both strictly smaller than n and divisible by p; by the inductive hypothesis, there must be
an element b ∈ Z(ai) of order p. Since Z(ai) ⊆ G, the same element b ∈ G is our desired
element of G of order p, and we are done.

Case 2. The only remaining case is that |Z(ai)| is not divisible by p, for all i = 1, . . . , k.
[Note that this includes the case that k = 0, i.e., that there are no conjugacy classes with
more than one element.]

Thus, the index [G : Z(ai)] = n/|Z(ai)| (where the equality is by Lagrange’s Theorem) is
divisible by p for all such i. By the class equation,

|Z(G)| = n− ([G : Z(a1)] + · · ·+ [G : Z(ak)]) .

Since all the integers on the right are divisible by p, we must have |Z(G)| divisible by p.

[Note: It’s tempting to try to invoke the inductive hypothesis here, but we can’t necessarily
do that, because it’s possible that |Z(G)| = n, i.e., that Z(G) = G is not actually a smaller
group than G. Of course, we could break into two more cases — one that |Z(G)| < n and
one that |Z(G)| = n — but it turns out that both cases are covered by a single, faster
argument, as follows.]

Thus, Z(G) is an abelian subgroup of G with order divisible by p. By the Lemma (i.e., by
Theorem 11.7 in Saracino), then, Z(G) contains an element b of order p. The same element
b is of course also in G, and we are done.


