
Math 350, Spring 2025 Professor Rob Benedetto

Optional Handout: Group Automorphisms

Let G be a group. Recall that, as Saracino defines on page 110, an automorphism of G is
an isomorphism ϕ : G → G; that is, ϕ is a one-to-one and onto homomorphism from G to
itself.

Clearly the identity function idG : G → G, given by idG(g) = g, is an automorphism; any
other automorphism is called a nontrivial automorphism.

Example. If G = Z, then the function ψ(n) = −n is a nontrivial automorphism of Z.
More generally:

Theorem. Let G be an abelian group. Define ψ : G → G by ψ(g) = g−1. Then ϕ is an
automorphism of G. If G has at least one element that is not its own inverse, then ϕ is a
nontrivial automorphism.

Proof. For any g, h ∈ G, we have

ψ(gh) = (gh)−1 = h−1g−1 = g−1h−1 = ψ(g)ϕ(h),

where we used abelian-ness in the middle.

Moreover, ψ is one-to-one because for all g, h ∈ G, if g−1 = h−1, then g = h.

Finally, ψ is onto because for any g ∈ G, we have ψ(g−1) = g. QED

In fact, one can also prove that the only two automorphisms of Z are idZ and the above
function ψ.

Here’s a sketch of that proof: first, show that if G is a cyclic group, a ∈ G is a generator,
and ϕ is an automorphism of G, then ϕ(a) is also a generator of G.

Second, show that if G is cyclic with generator a, then any homomorphism ϕ : G → H
is completely determined by ϕ(a). (That is, if H is any group and ϕ1, ϕ2 : G → H are
homomorphisms with ϕ1(a) = ϕ2(a), then ϕ1 = ϕ2.)

Finally, observe that ±1 are the only generators of Z, so there is (at most) one automorphism
mapping 1 to 1 (namely idZ), and (at most) one mapping 1 to −1 (namely ψ).

Example. You’ll see on the homework that if G is an abelian group and k ∈ Z is an
integer, then the function ψk : G→ G given by ψk(g) = gk is a homomorphism.

It turns out that if G is finite and abelian, and if gcd(|G|, k) = 1, then ψk is an automor-
phism.

Note that ψ1 = idG, and that ψ−1 is the map ψ in the “Theorem” of the previous example.

For the case that G = Cn, the cyclic group of order n, one can show, conversely, that every
automorphism of Cn is one of the functions ψk, where k ∈ Z is relatively prime to n.
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[Again, the proof uses the fact that an automorphism of Cn must map the generator 1 to
a generator, and the automorphism is completely determined by this generator. The result
follows, with a little more work, from the fact that the generators of Cn are precisely those
integers in Cn that are relatively prime to n.]

Also for Cn, the functions ψk and ψℓ are the same function if and only if k ≡ ℓmod n. So
the full set of automorphisms is the set of ψk’s where gcd(k, n) = 1 and 1 ≤ k ≤ n.

More on the automorphisms of Cn in an example on the next page. . .

Example. Let G be any group (probably non-abelian, in fact, if what we’re about to do
isn’t going to be totally boring), and fix an element a ∈ G.

Define a function ϕa : G→ G by
ϕa(g) = aga−1.

It’s not hard to show that ϕa is an automorphism of G. (This is Exercise 12.22.)

Moreover, ϕa = idG if and only if a ∈ Z(G). (In particular, we always get the identity map
if G is abelian.)

Any automorphism ϕ of G which is equal to ϕa for some a ∈ G is called an inner auto-
morphism of G.

Definition. Let G be a group. Define Aut(G) to be the set of all automorphisms of the
group G, and Inn(G) to be the set of all inner automorphisms of G.

Please note that
Inn(G) ⊆ Aut(G) ⊆ SG,

where (as on pages 63–64 of Saracino) SG denotes the set of all bijective functions from G
to itself (homomorphisms or not).

Theorem. Inn(G) and Aut(G) are subgroups of SG. That is, they each form groups under
composition.

Proof (sketch). Both Inn(G) and Aut(G) contain idG. (Note that a = e makes ϕe = idG).

It’s easy to verify that the composition of two automorphisms is an automorphism (see
Theorem 12.1(ii) in Saracino). It’s also easy to check that ϕa ◦ ϕb = ϕab, so that Inn(G) is
also closed under composition.

Similarly, the inverse of an automorphism is an automorphism (Theorem 12.1(iii)), and it’s
easy to check that (ϕa)

−1 = ϕ(a−1). QED

By the way, we can define a function Φ : G → Inn(G) by Φ(a) = ϕa. The fact that
ϕa ◦ ϕb = ϕab means that Φ is a homomorphism. It’s easy to see that Φ is onto. Also,
Φ(a) = idG if and only if a ∈ Z(G); so it will follow from an upcoming result (the First
Isomorphism Theorem, Theorem 13.2) that Inn(G) ∼= G/Z(G).
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Example. If G is abelian, then Inn(G) = {idG} is the trivial group. However, Aut(G) is
generally much larger.

For example, our discussion above shows that

Aut(Cn) = {ψk : 1 ≤ k ≤ n and (k, n) = 1}.

In fact, ψk ◦ ψℓ = ψkℓ, which means that there is a homomorphism

Ψ : Un → Aut(Cn) by Ψ(k) = ψk,

where Un is the group of integers between 1 and n relatively prime to n under multiplication
modulo n.

It’s easy to check that Ψ is bijective, so that Aut(Cn) ∼= Un.

Meanwhile, we also said that Aut(Z) = {idg, ψ−1}, so that Aut(Z) ∼= C2.

Example. Let G = V4 = {e, a, b, c}, the Klein 4-group. Again, Inn(V4) is trivial because V4
is abelian. However, it’s not difficult to show that any permutation σ of {e, a, b, c} that leaves
e fixed (i.e., such that σ(e) = e) is an automorphism of V4. For example, the transposition
function σ = (a, b) (i.e., the function from V4 to itself that exchanges a and b but has
σ(e) = e and σ(c) = c) is an automorphism of V4. From that, it’s not too difficult to show
that Aut(V4) ∼= S3.

Example. Let G = Sn, with n ̸= 6. Then it can be shown that every automorphism of Sn

is an inner automorphism. That is, if ϕ : Sn → Sn is an automorphism, then there is some
σ ∈ Sn such that ϕ = ϕσ. [This is not at all obvious. If you are curious about how this proof
goes, ask me about it. You might also take a look at the wikipedia.org entry on “Outer
automorphism group”.]

Moreover, for n ≥ 3, the center Z(Sn) is trivial, so that for n ≥ 3 with n ̸= 6, we have

Aut(Sn) = Inn(Sn) ∼= Sn/Z(Sn) = Sn/{e} ∼= Sn.

On the other hand, if n = 6, it turns out that there are automorphisms of S6 that are not
inner automorphisms. [This is really not obvious.] Essentially, the reason this is possible is
that S6 has exactly 15 permutations of the form (x1, x2)(x3, x4)(x5, x6) (i.e., three disjoint
2-cycles), and exactly 15 2-cycles, which opens the door for automorphisms that exchange
these two conjugacy classes. (No other Sn for n ≥ 2 has the same number of 2-cycles as some
other conjugacy class of permutations.) It turns out that Inn(S6) has index 2 in Aut(S6).
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Example. The alternating group An has trivial center Z(An) = {e} (at least for n ≥ 4;
note that A2 = {e} and A3

∼= C3 are abelian), so that Inn(An) ∼= An.

However, An has other automorphisms coming from the fact that An is itself a normal
subgroup of Sn. That is, if f ∈ Sn is an odd permutation and if σ ∈ An, then fσf

−1 ∈ An.
Thus, the inner (for Sn) automorphism ϕf of Sn, when restricted to the smaller domain An,
gives a non-inner (for An) automorphism ϕf |An of An.

So for n ≥ 4, An has
Aut(An) ⊋ Inn(An) ∼= An.

(And Aut(A3) ∼= Aut(C3) ∼= U3
∼= C2, since A3

∼= C3.)

In all of the above examples, we either had Aut(G) = Inn(G) or Inn(G) = {idG} or Z(G) =
{e}. However, “most” of the time, none of these equalities holds; they are usually all proper
containments of sets.

Example. Let G = D4. Then Z(D4) = ⟨f 2⟩ = {e, f 2}, so that Inn(D4) ∼= D4/⟨f 2⟩ ∼= V4.

Meanwhile, |Aut(D4)| = 8. In fact, f can be mapped to either f or f−1, and g can be
mapped to any of the four elements f ig by an automorphism. That is, for each of the 2 · 4
choices of where to map f and g just described, there is exactly one such automorphism of
D4. (In fact, it can be shown that Aut(D4) ∼= D4.)

So Aut(D4) ⊋ Inn(D4), and Inn(D4) ⊋ {idG}, and Z(D4) ⊋ {e}.

Theorem. Let G be a group. Then Inn(G) ◁ Aut(G).

Proof. Given ϕ ∈ Inn(G) and ψ ∈ Aut(G). Then there is some a ∈ G such that ϕ = ϕa.
We claim that

ψ ◦ ϕ ◦ ψ−1 = ϕb, where b = ψ(a).

The Theorem will then following immediately.

For any x ∈ G, noting that a = ψ−1(b), we compute:

ψ ◦ ϕ ◦ ψ−1(x) = ψ
(
aψ−1(x)a−1

)
= ψ

(
ψ−1(b)ψ−1(x)ψ−1(b−1)

)
= ψ

(
ψ−1(bxb−1)

)
= bxb−1.

QED

Thus, we can form the quotient group Out(G) = Aut(G)/ Inn(G) of outer automorphisms.

Please note that an element of Out(G) is not itself an automorphism; rather, it is a coset of
automorphisms for the subgroup Inn(G) of inner automorphisms.

[However, we sometimes abuse language and call an element of Aut(G) which is not in
Inn(G) an outer automorphism. For example, it can be shown that Out(S6) ∼= C2. That
is, technically speaking, there is exactly one nontrivial coset of outer automorphisms of S6.
But mathematicians will often refer to “the” nontrivial outer automorphism of S6, though of
course they know that they really mean a whole coset worth of non-inner automorphisms.]
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