
Math 350, Spring 2025 Professor Rob Benedetto

Optional Handout: Other Group Theory Topics, from Sections 13–15

There are some wonderful topics in Sections 13–15 of Saracino’s book that we sadly do not have
time for. But here is a brief summary.

The Isomorphism Theorems

The following theorems all appear in Section 13. The first, also known as the Fundamental
Theorem on Group Homomorphisms, was covered in detail in class, and you are responsible
for it (for the final, not the midterms); I’m only including it here for completeness. All four
concern homomorphisms and quotient groups.

First Isomorphism Theorem. (Saracino Theorem 13.2)

Let G and H be groups, let ϕ : G → H be an onto homomorphism, and let K = kerϕ. Then
G/K ∼= H.

Correspondence Theorem. (Saracino Theorem 13.3)

Let G and H be groups, let ϕ : G → H be an onto homomorphism, and let K = kerϕ. Then
there is a one-to-one and onto function{

subgroups of G containing K
}
→

{
subgroups of H

}
given by G′ 7→ ϕ(G′). Moreover, for each subgroup G′ of G containing K, we have G′ ◁ G iff
ϕ(G′) ◁ H.

Second Isomorphism Theorem. (Saracino Theorem 13.4)

Let G be a group, let H,K ⊆ G be subgroups, and supposeK ◁ G. Then H/(H∩K) ∼= HK/K

(Here, HK = {hk : h ∈ H and k ∈ K}. From various old problem sets, we know, using the
fact that K ◁ G, that HK is a subgroup of G containing K as a normal subgroup, and that
H ∩K is a normal subgroup of H; that is, the statement of the Theorem makes sense.)

Third Isomorphism Theorem. (Saracino Theorem 13.5)

Let G be a group, let H ◁ K ◁ G, and suppose in addition that H ◁ G. Then K/H ◁ G/H,
and (G/H)

/
(K/H) ∼= G/K.

The proof of each of the above theorems requires writing down an appropriate function (between
two groups in the case of the three Isomorphism Theorems, or between two sets in the case of
the Correspondence Theorem) and then proving that it has whatever properties are relevant.
We did the first one in class; see Saracino for the others. For the Correspondence Theorem,
the map between the two sets is already given in the statement of the theorem; the rest of
the proof is simply to verify that this function between sets is one-to-one and onto, and that
the second clause (about normal subgroups) holds. Meanwhile, the proofs of the Second and
Third Isomorphism Theorems use the result of the First, by merely constructing an onto
homomorphism with the appropriate kernel. For example, the map for the Third Isomorphism
Theorem goes from G/H to G/K by mapping Hg 7→ Kg. One then proves that this map is a
well-defined, onto homomorphism with kernel exactly K/H.
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Finitely Generated Abelian Groups

If you think about it, every finite abelian group we have run into has been (isomorphic to) a
direct product of finitely many cyclic groups. (For example, the Klein 4-group turned out to
be V4

∼= C2 × C2.) Well, that’s always true:

Structure Theorem for Finite Abelian Groups (Saracino Theorem 14.2.)

Let G be a finite abelian group, and factor n = |G| as n = ps11 ps22 · · · pskk , where k ≥ 0, the
numbers p1, . . . , pk are distinct primes, and s1, . . . , sk ≥ 1.

Then there are abelian groups G1, . . . , Gk with |Gi| = psii and G ∼= G1 × G2 × · · · × Gk, and
each Gi is itself of the form

Gi
∼= Cqi,1 × Cqi,2 × · · · × Cqi,mi

where each integer qi,j is of the form qi,j = p
ti,j
i , with ti,j ≥ 1, and si = ti,1 + · · ·+ ti,mi

.

Furthermore, this factorization is unique up to permuting the order in which the various Cq’s
are listed.

In other words, every finite abelian group is isomorphic to a unique direct product
of cyclic groups of prime-power order.

For example, the abelian group C6 is isomorphic to C2 × C3. (See Theorem 6.1(ii).)

As another example, the Theorem says that any abelian group of order 24 is isomorphic to
exactly one of

C8 × C3, C2 × C4 × C3, or C2 × C2 × C2 × C3.

The proof of the theorem is fairly long, and it takes up most of pages 138–141. (Plus the
statement and proof of Theorem 14.1 on pages 133–134; that’s an interesting result in its own
right, and you should take a look.) But even though the proof is long, it is really just the
repeated use of tools we have already learned: quotient groups, orders of elements, and so on.

More generally, recall that a (not necessarily finite) group G is finitely generated if there
is a finite set S ⊆ G that generates G. (Remember, this means that every element of G can
be written as a product of the form xe1

1 · · ·xem
m , where each xi is an element of S, and ei ∈ Z

are integers; the xi’s are allowed to be repeats of each other.) The following theorem is an
extension of the one above to finitely generated abelian groups:

Structure Theorem for Finitely Generated Abelian Groups

Let G be a finitely generated abelian group. Then there is an integer r ≥ 0 and a finite abelian
subgroup G0 ⊆ G such that

G ∼= Zr ×G0,

where Zr denotes Z× · · · × Z. In fact, the subgroup G0 is precisely the torsion subgroup

G0 = {g ∈ G : ∃n ≥ 1 such that gn = e}.

Moreover, r and G0 are unique, in the sense that if G ∼= Zs × H for some integer s ≥ 0 and
finite abelian group H, then r = s and H ∼= G0.
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The integer r is called the rank of the abelian group G. Note that a finitely generated abelian
group G has rank zero if and only if G itself is finite.

Together, then, the two above structure theorems say that any finitely generated abelian group
is a finite product of cyclic groups.

Please note, however, that many infinite abelian groups are not finitely generated. For example,
neither (Q,+) nor (Q×, ·) is finitely generated. (Can you prove that?)

The Sylow Theorems

So what can we say about the structure of finite non-abelian groups? Well, far less than we
can say about abelian groups, but we can strengthen the result of Cauchy’s Theorem (that
if p divides the order of G, then G has a subgroup of order p) substantially. The Norwegian
mathematician Ludwig Sylow (pronounced “SEE-lō”) proved this generalization as a series of
three theorems in 1872. To state them, we first need some definitions.

Definition. Let G be a group, and let H,K ⊆ G be subgroups. If there is some element a ∈ G
such that K = aHa−1, then we say H and K are conjugate (to each other).

A few things to note, most of which we already know:

1. The relation of conjugacy is an equivalence relation on the set of subgroups of G.
2. Two conjugate subgroups are isomorphic to one another. In particular, they each have

the same number of elements.
3. A subgroup H ⊆ G is normal in G if and only if its only conjugate is itself.

Definition. Let G be a finite group, p a prime number, and n ≥ 1 a positive integer. Suppose
that pn divides the order of G but pn+1 does not. Then a subgroup H ⊆ G of order pn is called
a p-Sylow subgroup of G, or simply a Sylow subgroup of G.

For example, if |G| = 24, then a 3-Sylow subgroup is any subgroup of order 3, while a 2-Sylow
subgroup is any subgroup of order 8. Moreover, G has no p-Sylow subgroups for p ≥ 5, by
Lagrange’s Theorem.

The Sylow Theorems Let G be a finite group, let p be a prime number, and let n ≥ 1.
Suppose that pn | |G| but pn+1 ∤ |G|. Then:

1. G has at least one p-Sylow subgroup. Moreover,

(a) For any p-Sylow subgroup H ⊆ G and integer k with 1 ≤ k ≤ n, H has a subgroup
of order pk.

(b) For any integer k with 1 ≤ k ≤ n and any subgroup H ′ ⊆ G with |H ′| = pk, there
is a p-Sylow subgroup H of G such that H ′ ⊆ H ⊆ G.

2. Any two p-Sylow subgroups are conjugate. That is, for any subgroups H1, H2 ⊆ G such
that |H1| = |H2| = pn, there is some a ∈ G such that H2 = aH1a

−1.

3. Let m be the number of p-Sylow subgroups of G.

Then m ≡ 1 (mod p), and m divides |G|/pn.
That is, m | |G|, p ∤ m, and there is an integer j ≥ 1 such that m = 1 + jp.

In fact, if H is a p-Sylow subgroup, then m = [G : N(H)], where N(H) is the normalizer
of H in G.
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The Sylow Theorems appear in Section 15, specifically as Theorems 15.1–15.3 on page 144. The
proofs are quite involved, but they use techniques we are familiar with: counting certain sets by
constructing cleverly chosen one-to-one and onto maps between sets, using results like the Class
Equation, Lagrange’s Theorem, and Cauchy’s Theorem. In particular, although statement 1(a)
above is a generalization of Cauchy’s Theorem, the proof requires the use of Cauchy’s Theorem,
so we were not wasting our time when we proved Cauchy’s Theorem.

Here is an example of the power of the Sylow Theorems.

Corollary. Let p and q be prime numbers with p < q and p ∤ (q − 1). Then every group of
order pq is abelian, and in fact cyclic.

(So for example, the only group of order 15 = 3 · 5 is C15, up to isomorphism. However, this
doesn’t apply to numbers like 10 = 2 · 5 or more generally 2q, where q is an odd prime, since
2|(q − 1). And good thing it doesn’t apply in that case, since there are nonabelian groups of
those orders, namely the dihedral group Dq of order 2q. It also doesn’t apply to groups of order
21 = 3 · 7, since 3|(7− 1). And sure enough, there is a nonabelian group of order 21; see if you
can find it.)

Proof of Corollary. Given a group G of order pq, let H ⊆ G be a p-Sylow subgroup, and
let K ⊆ G be a q-Sylow subgroup; they exist by the First Sylow Theorem. So |H| = p and
|K| = q.

But how many p-Sylow subgroups are there? Well, call this number m. By the Third Sylow
Theorem, we have m|q (i.e., m = 1 or m = q, since q is prime) but also m ≡ 1 (mod p); so
m = 1, since q ̸≡ 1 (mod p) by hypothesis. That is, H is the only p-Sylow subgroup. Since
aHa−1 is also a p-Sylow subgroup for any a ∈ G, we must have aHa−1 = H for all a ∈ G, and
hence H ◁ G.

By a similar argument, K ◁ G. (This time we use the hypothesis that q > p to show that
p ̸≡ 1 (mod q), and hence the number of q-Sylow subgroups is not p.)

Consider the subgroupH∩K. By Lagrange’s Theorem, the number of elements of this subgroup
must divide both p and q, and therefore this number must be 1. That is, H ∩K = {e}. Using
that fact, one can easily show that the set HK = {hk : h ∈ H, k ∈ K} has exactly pq distinct
elements, and therefore HK = G. That is, every element of G may be written as hk for some
h ∈ H and k ∈ K.

Meanwhile, using the three facts that H ◁ G, K ◁ G, and H ∩K = {e}, one can show that
hk = kh for all h ∈ H and k ∈ K; see Exercise 11.7. However, H is abelian (since it is order p
and hence cyclic), and so is K. Thus, given g1, g2 ∈ G, we may write g1 = h1k1 and g2 = h2k2
with h1, h2 ∈ H and k1, k2 ∈ K, and therefore

g1g2 = h1k1h2k2 = h1h2k1k2 = h2h1k2k1 = h2k2h1k1 = g2g1.

That is, G is abelian. It then follows immediate from the Structure Theorem for Finite Abelian
Groups that G ∼= Cp × Cq, which is cyclic by Theorem 6.1(ii). QED

You can find more applications of the Sylow Theorems in Chapter 15, especially on pages 146–
147 and in the exercises of that section.
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