
Math 345, Fall 2024

Solutions to Homework #7

Problem 1. II.4, #2. Let a ∈ C ∖ {0} be a nonzero complex number, and Let f(z) be an analytic
branch of za . Prove that f ′(z) = af(z)/z.

Proof. We have f(z) = exp
(
ag(z)

)
where exp(z) = ez, and g(z) is some (analytic) branch of log z.

Note that the domain D of g is also the domain of f . For any z ∈ D, we have g′(z) =
1

z
. (See the

sentence just after equation (4.2) on page 52.)

Therefore, since
d

dz
(exp(z)) = exp(z), at any z ∈ D, the Chain Rule gives us

f ′(z) = exp
(
ag(z)

)
· ag′(z) = f(z) · a · 1

z
=

af(z)

z
QED

Problem 2. II.4, #7. Let D ⊆ C be a bounded domain, and let f be a bounded analytic function

on D. Suppose also that f is one-to-one on D. Prove that Area
(
f(D)

)
=

∫∫
D

∣∣f ′(z)
∣∣2 dx dy.

Proof. From the Theorem on page 51, the Jacobian of f , viewed as a map from D to R2, satisfies
|det Jf | = |f ′(z)2|. Therefore, by the Multivariable Change-of-Variables Formula,

Area
(
f(D)

)
=

∫∫
f(D)

1 du dv =

∫∫
D
1 ·

∣∣f ′(z)
∣∣2 dx dy =

∫∫
D

∣∣f ′(z)
∣∣2 dx dy. QED

Problem 3. II.4, #9. Let D = D(0, 1) be the open unit disk {z ∈ C : |z| < 1}, and let f(z) = z2.

Compute

∫∫
D

∣∣f ′(z)
∣∣2 dx dy. Interpret the answer in terms of areas; that is, explain how the value

you get actually agrees with the previous problem.

Solution. We have f ′(z) = 2z, so |f ′(z)|2 = 4|z|2 = 4(x2+y2). We now have a Math 211-style double
integral, which we compute with polar coordinates:∫∫

D

∣∣f ′(z)
∣∣2 dx dy =

∫∫
D
4(x2 + y2) dx dy =

∫ 2π

0

∫ 1

0
4r2 · r dr dθ =

∫ 2π

0

∫ 1

0
4r3 dr dθ

=

∫ 2π

0
r4
∣∣∣∣1
0

dθ =

∫ 2π

0
(1− 0) dθ = θ

∣∣∣∣2π
0

= 2π

Interpretation. The image disk f(D) is the same disk D(0, 1), which has area π, not 2π. But of
course, the function f : D → f(D) is not one-to-one, but rather two-to-one, so the previous problem
does not apply directly. Instead, since the mapping is two-to-one, we get 2 times the area as the value
of the integral.

More precisely, let’s cut D into two pieces, the right half U1 = {z ∈ D : Re z > 0} and the left half
U2 = {z ∈ D : Re z < 0}. Then each half maps one-to-one onto D(0, 1) (well, aside from removing a
slit of area 0). So the contribution to the integral above from each of U1 and U2 alone is π, for the
area π of its image D(0, 1) (minus the slit), totaling 2π.

Problem 4. II.5, #2. Let D ⊆ C be a domain, and let u, v : D → R be harmonic functions. Suppose
that v is a harmonic conjugate for u. Prove that −u is a harmonic conjugate for v.

Proof. Let f = u + iv, which is analytic on D because v is a harmonic conjugate for u. Let
g = −if = v − iu. Then (as a constant multiple of f), g is also analytic. Since v = Re g, then by
definition of harmonic conjugate, we have that −u = Im g is a harmonic conjugate for v. QED



Problem 5. II.5, #3(a,b), slight variant. Define u(z) =

{
Im(1/z2) for z ∈ C∖ {0},
0 for z = 0.

Prove that all four of
∂u

∂x
,
∂2u

∂x2
,
∂u

∂y
,
∂2u

∂y2
exist at all points of C (viewed as R2), including at the point

(0, 0).

Then verify that u satisfies Laplace’s equation on R2. That is, prove that
∂2u

∂x2
+

∂2u

∂y2
= 0 everywhere

on R2.

Proof. Since u(z) = Im(z̄2/|z|4) for z ̸= 0, a quick computation shows that u(x, y) =
−2xy

(x2 + y2)2
for

(x, y) ̸= (0, 0).

Away from (0, 0), u(x, y) is a rational function defined everywhere on R2∖{(0, 0)}, so (by the quotient
rule, etc.), its partial derivatives ux and uy are also rational functions defined everywhere on R2 ∖
{(0, 0)}. Thus, their partial derivatives uxx and uyy are also defined everywhere on R2 ∖ {(0, 0)}.
[Note: you can also compute their formulas exactly, but we won’t need to here.]

Note that u(x, 0) = 0 for all x ∈ R, and u(0, y) = 0 for all y ∈ R. Thus, by definition of partial
derivatives, for every x, y ∈ R, we have

ux(x, 0) = lim
∆x→0

u(x+∆x, 0)− u(x, 0)

∆x
= lim

∆x→0
0 = 0

and

uy(0, y) = lim
∆y→0

u(0, y +∆y)− u(0, y)

∆y
= lim

∆y→0
0 = 0.

In particular, both ux(0, 0) and uy(0, 0) exist and equal 0.

Since ux(x, 0) is identically zero on the x-axis, it follows that uxx(x, 0) is also identically zero. In
particular, uxx(0, 0) exists and equals 0. Similarly, uyy(0, y) is identically zero, and in particular,
uyy(0, 0) exists and equals 0. We have shown that ux, uy, uxx, and uyy are defined at all points of R2,
as desired.

For Laplace’s equation, note that at (0, 0), we have just shown that uxx(0, 0) = uyy(0, 0) = 0, and
hence uxx(0, 0) + uyy(0, 0) = 0. Away from the origin, u = Im(1/z2) is the imaginary part of an
analytic function (namely f(z) = 1/z2) and hence is harmonic on C ∖ {0} as well. [This can also
be confirmed by computing uxx and uyy directly, but that’s much more painful.] Thus, u satisfies
Laplace’s equation on all of R2. QED

Side note: If you really want to compute derivatives, then away from (0, 0), direct computation gives

ux(x, y) =
−2y(x2 + y2)2 + 2xy · 2(x2 + y2)(2x)

(x2 + y2)4
=

2y(−x2 − y2 + 4x2)

(x2 + y2)3
=

2y(3x2 − y2)

(x2 + y2)3

and similarly uy =
2x(3y2 − x2)

(x2 + y2)3
.

Another pair of brute-force computations then gives uxx =
24xy(y2 − x2)

(x2 + y2)4
and uyy =

24xy(x2 − y2)

(x2 + y2)4

away from (0, 0).

And those two expressions for uxx and uyy clearly sum to 0 for (x, y) ̸= (0, 0). But even if you do all
of these explicit computations, you still need to go back and compute all of these partial derivatives
at (0, 0) by the limit definition, as in the main proof above.
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Problem 6. II.5, #3(c,d), slight variant. With u as in the previous problem, prove that
∂2u

∂x∂y
does

not exist at (0, 0). Conclude that u is not harmonic on the whole plane, even though we just saw that
it satisfies Laplace’s equation on the whole plane.

Proof. This time, we do need to compute at least uy explicitly away from (0, 0), giving:

uy(x, y) =
−2x(x2 + y2)2 + 2xy · 2(x2 + y2)(2y)

(x2 + y2)4
=

2y(−x2 − y2 + 4y2)

(x2 + y2)3
=

2y(3y2 − x2)

(x2 + y2)3

As we saw in the previous problem, we also have uy(0, 0) = 0. Thus,

uy(x, y) =

{
2x(3y2−x2)
(x2+y2)3

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0),

Restricting to y = 0, we have

uy(x, 0) =

{
−2x−3 if x ̸= 0,

0 if x = 0,

which is not continuous and hence not differentiable at x = 0, since lim
x→0

−2

x3
(for x ∈ R) diverges.

Thus, uyx(0, 0) does not exist, as desired.

In addition, it follows that u does not have all of its second partials existing, so u is not harmonic on
the whole plane. QED

Side note: Actually, the original function u isn’t even continuous on the plane.

Indeed, for any x ∈ R∖ {0}, we have u(x, x) =
−2x2

(x2 + x2)2
= − 1

2x2
.

Thus, lim
x→0

u(x, x) = lim
x→0

− 1

2x2
= −∞ diverges, so indeed, u is not even continuous at (0, 0).
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