
Math 345, Fall 2024

Solutions to Homework #6

Problem 1. II.1, #16, slight variant: Prove that
(a) the slit plane C∖ (−∞, 0] is star-shaped, but
(b) the punctured plane C∖ {0} is not star-shaped.

Proof. (a) Let D = C ∖ (−∞, 0]. We will show that z0 = 1 ∈ D works as the star point of this
domain.

Given any z ∈ D, write z = x + iy. To prove that the line segment L from 1 to z is contained in D,
we consider two cases.

Case 1. Suppose y = 0. Then z ∈ R, and hence we must have z > 0. Thus, the line segment L is
[1, z] if z ≥ 1, or [z, 1] if 0 < z < 1. Either way, L is contained in the positive real line (0,∞), and
hence it is contained in D.

Case 2. Otherwise, we have y ̸= 0. Then every point w on L besides the endpoint z0 = 1 has nonzero
imaginary part, and hence w ∈ D. Since 1 ∈ D as well, it follows that L ⊆ D. QED (a)

(b): Let D′ = C∖ {0}. Given any z0 ∈ D′, we must show that z0 does not serve as a star point of D′.

Let z = −z0. Then z ̸= 0, since z0 ̸= 0; that is, z ∈ D′. However, the line segment L from z0 to z
contains the point 0 ̸∈ D′. Thus, L ̸⊆ D′, proving that z0 is not a star point of D′. QED (b)

Problem 2. II.2, #2. For any z ∈ C∖ {1} and any integer n ≥ 1, prove that

1 + 2z + 3z2 + · · ·+ nzn−1 =
1− zn

(1− z)2
− nzn

1− z
.

Proof. (Method 1): By induction on n ≥ 1.

For n = 1, the left side is 1, and the right side is
1− z

(1− z)2
− z

1− z
=

1

1− z
− z

1− z
=

1− z

1− z
= 1,

proving the base case.

Assuming the equality holds for some particular n ≥ 1, we must show it also holds for n+1. We have

1+2z+3z2+ · · ·+nzn−1+(n+1)zn =

(
1− zn

(1− z)2
− nzn

1− z

)
+(n+1)zn [by the inductive assumption]

=
1− zn

(1− z)2
+

(
− nzn

1− z
+ (n+ 1)zn

)
=

1− zn+1 + zn+1 − zn

(1− z)2
+

(−nzn) + (n+ 1)zn − (n+ 1)zn+1

1− z

=
1− zn+1

(1− z)2
− zn(1− z)

(1− z)2
+

zn − (n+ 1)zn+1

1− z
=

1− zn+1

(1− z)2
− zn

1− z
+

zn

1− z
− (n+ 1)zn+1

1− z

=
1− zn+1

(1− z)2
− (n+ 1)zn+1

1− z
QED

(Method 2): For any such z and n, we have

(1− z)
(
1 + z + z2 + · · ·+ zn−1

)
=

(
1 + z + z2 + · · ·+ zn−1

)
−
(
z + z2 + z3 + · · ·+ zn

)
= 1− zn.

Therefore, we have

(1−z)2
(
1+2z+3z2+ · · ·+nzn−1

)
= (1−z)

[(
1+2z+3z2+ · · ·+nzn−1

)
−
(
z+2z2+3z3+ · · ·+nzn

)]



= (1− z)
[(
1 + z + z2 + · · ·+ zn−1

)
− nzn

]
= (1− zn)− nzn(1− z).

Dividing both sides by (1− z)2, then, we have 1 + 2z + 3z2 + · · ·+ nzn−1 =
1− zn

(1− z)2
− nzn

1− z
. QED

(Method 3): Start the same way as Method 2, to get:

(1− z)
(
1 + z + z2 + · · ·+ zn

)
= 1− zn+1, and hence 1 + z + z2 + · · ·+ zn =

1− zn+1

1− z
.

Both sides are analytic on C∖ {1}, so we may differentiate, to get:

1 + 2z + 3z2 + · · ·+ nzn−1 =
−(n+ 1)zn(1− z)− (1− zn+1)(−1)

(1− z)2

=
−nzn(1− z)− zn + zn+1 + 1− zn+1

(1− z)2
=

−nzn(1− z) + 1− zn

(1− z)2
=

1− zn

(1− z)2
− nzn

1− z
QED

Problem 3. II.2, #3. Prove (from the definition) that the functions Re(z) and Im(z) are not
differentiable at any point.

Proof. For any z ∈ C, the limit definition of the derivative of Re(z) is

Re′(z) = lim
h→0

Re(z + h)− Re(z)

h
= lim

h→0

Reh

h
.

Writing h = u + iv, first let v = 0, so that h = u. Then the limit above (along the horizontal line
h ∈ R) is

lim
u→0

Re(u+ 0i)

u+ 0i
= lim

u→0

u

u
= lim

u→0
1 = 1

But if we use u = 0, so that h = iv, then the limit above (along the vertical line h ∈ iR) is

lim
v→0

Re(0 + iv)

0 + iv
= lim

v→0

0

iv
= lim

v→0
0 = 0.

Since these two limits disagree, the overall limit defining Re′(z) diverges. QED Re

For any z ∈ C, the limit definition of the derivative of Im(z) is

Im′(z) = lim
h→0

Im(z + h)− Im(z)

h
= lim

h→0

Imh

h
.

Writing h = u + iv, first let v = 0, so that h = u. Then the limit above (along the horizontal line
h ∈ R) is

lim
u→0

Im(u+ 0i)

u+ 0i
= lim

u→0

0

u
= lim

u→0
0 = 0

But if we use u = 0, so that h = iv, then the limit above (along the vertical line h ∈ iR) is

lim
v→0

Im(0 + iv)

0 + iv
= lim

v→0

v

iv
= lim

v→0
−i = −i.

Since these two limits disagree, the overall limit defining Im′(z) diverges. QED Im

Problem 4. II.3, #2. Prove that the functions u = sinx sinh y and v = cosx cosh y satisfy the
Cauchy-Riemann equations. Then find a function f(z) (with a simple formula in terms of z) so that
f = u+ iv. (And of course, prove/verify that this formula holds.)

Proof. We compute
∂u

∂x
= cosx sinh y and

∂v

∂y
= cosx sinh y =

∂u

∂x
.

Similarly, We compute
∂u

∂y
= sinx cosh y and

∂v

∂x
= − sinx cosh y = −∂u

∂y
. QED
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By I.8 #1(a) [from HW3], we have cos(z + w) = cos z cosw − sin z sinw.

Thus, using the formulas cos(iz) = cosh(z) and sin(iz) = i sinh(z) from Section I.8 (page 30), we have

cos(x+ iy) = cosx cosh y − i sinx sinh y.

Therefore, f = u+ iv = sinx sinh y + i cosx cosh y = i cos(x+ iy) = i cos(z). So f(z) = i cos(z)

Problem 5. II.3, #3. Let D ⊆ C be a domain and let f : D → C. Suppose that both f(z) and its
complex conjugate f(z) are analytic on D. Prove that f is constant on D.

Proof. Write f = u+ iv, so that f = u− iv. Since both are analytic, we have
∂u

∂x
=

∂v

∂y
= −∂u

∂x
,

by the first Cauchy-Riemann equation for f and for f , respectively. Thus,
∂u

∂x
= 0 on D.

Similarly, the second Cauchy-Riemann equations for f and for f give us −∂v

∂x
=

∂u

∂y
=

∂v

∂x
.

Thus,
∂v

∂x
= 0 on D.

By equation (3.1), then, we have f ′ =
∂u

∂x
+ i

∂v

∂x
= 0 on D. By the Theorem on page 49, it follows

that f is constant on D. QED
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