Math 345, Fall 2024

Solutions to Homework #6

Problem 1. II.1, #16, slight variant: Prove that

- (a) the slit plane $\mathbb{C} \setminus (-\infty, 0]$ is star-shaped, but
- (b) the punctured plane $\mathbb{C} \setminus \{0\}$ is not star-shaped.

Proof. (a) Let $D = \mathbb{C} \setminus (-\infty, 0]$. We will show that $z_0 = 1 \in D$ works as the star point of this domain.

Given any $z \in D$, write z = x + iy. To prove that the line segment L from 1 to z is contained in D, we consider two cases.

Case 1. Suppose y = 0. Then $z \in \mathbb{R}$, and hence we must have z > 0. Thus, the line segment L is [1, z] if $z \ge 1$, or [z, 1] if 0 < z < 1. Either way, L is contained in the positive real line $(0, \infty)$, and hence it is contained in D.

Case 2. Otherwise, we have $y \neq 0$. Then every point w on L besides the endpoint $z_0 = 1$ has nonzero imaginary part, and hence $w \in D$. Since $1 \in D$ as well, it follows that $L \subseteq D$. QED (a)

(b): Let $D' = \mathbb{C} \setminus \{0\}$. Given any $z_0 \in D'$, we must show that z_0 does not serve as a star point of D'. Let $z = -z_0$. Then $z \neq 0$, since $z_0 \neq 0$; that is, $z \in D'$. However, the line segment L from z_0 to z contains the point $0 \notin D'$. Thus, $L \nsubseteq D'$, proving that z_0 is not a star point of D'. QED (b)

Problem 2. II.2, #2. For any $z \in \mathbb{C} \setminus \{1\}$ and any integer $n \ge 1$, prove that

$$1 + 2z + 3z^{2} + \dots + nz^{n-1} = \frac{1 - z^{n}}{(1 - z)^{2}} - \frac{nz^{n}}{1 - z}$$

Proof. (Method 1): By induction on $n \ge 1$.

For n = 1, the left side is 1, and the right side is $\frac{1-z}{(1-z)^2} - \frac{z}{1-z} = \frac{1}{1-z} - \frac{z}{1-z} = \frac{1-z}{1-z} = 1$, proving the base case.

Assuming the equality holds for some particular $n \ge 1$, we must show it also holds for n+1. We have $1+2z+3z^2+\dots+nz^{n-1}+(n+1)z^n = \left(\frac{1-z^n}{(1-z)^2}-\frac{nz^n}{1-z}\right)+(n+1)z^n$ [by the inductive assumption] $= \frac{1-z^n}{(1-z)^2} + \left(-\frac{nz^n}{1-z}+(n+1)z^n\right) = \frac{1-z^{n+1}+z^{n+1}-z^n}{(1-z)^2} + \frac{(-nz^n)+(n+1)z^n-(n+1)z^{n+1}}{1-z}$ $= \frac{1-z^{n+1}}{(1-z)^2} - \frac{z^n(1-z)}{(1-z)^2} + \frac{z^n-(n+1)z^{n+1}}{1-z} = \frac{1-z^{n+1}}{(1-z)^2} - \frac{z^n}{1-z} + \frac{z^n}{1-z} - \frac{(n+1)z^{n+1}}{1-z}$ $= \frac{1-z^{n+1}}{(1-z)^2} - \frac{(n+1)z^{n+1}}{1-z}$ QED

(Method 2): For any such z and n, we have $(1-z)(1+z+z^2+\cdots+z^{n-1}) = (1+z+z^2+\cdots+z^{n-1}) - (z+z^2+z^3+\cdots+z^n) = 1-z^n.$ Therefore, we have

$$(1-z)^{2} (1+2z+3z^{2}+\dots+nz^{n-1}) = (1-z) \Big[(1+2z+3z^{2}+\dots+nz^{n-1}) - (z+2z^{2}+3z^{3}+\dots+nz^{n}) \Big]$$

$$= (1-z) \left[\left(1 + z + z^2 + \dots + z^{n-1} \right) - n z^n \right] = (1-z^n) - n z^n (1-z).$$

Dividing both sides by $(1-z)^2$, then, we have $1 + 2z + 3z^2 + \dots + nz^{n-1} = \frac{1-z^n}{(1-z)^2} - \frac{nz^n}{1-z}$. QED

(Method 3): Start the same way as Method 2, to get: $(1-z)(1+z+z^2+\dots+z^n) = 1-z^{n+1}$, and hence $1+z+z^2+\dots+z^n = \frac{1-z^{n+1}}{1-z}$. Both sides are analytic on $\mathbb{C} \setminus \{1\}$, so we may differentiate, to get: $1+2z+3z^2+\dots+nz^{n-1} = \frac{-(n+1)z^n(1-z)-(1-z^{n+1})(-1)}{(1-z)^2}$ $= \frac{-nz^n(1-z)-z^n+z^{n+1}+1-z^{n+1}}{(1-z)^2} = \frac{-nz^n(1-z)+1-z^n}{(1-z)^2} = \frac{1-z^n}{1-z}$ QED

Problem 3. II.2, #3. Prove (from the definition) that the functions $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are not differentiable at any point.

Proof. For any $z \in \mathbb{C}$, the limit definition of the derivative of $\operatorname{Re}(z)$ is

$$\operatorname{Re}'(z) = \lim_{h \to 0} \frac{\operatorname{Re}(z+h) - \operatorname{Re}(z)}{h} = \lim_{h \to 0} \frac{\operatorname{Re} h}{h}.$$

Writing h = u + iv, first let v = 0, so that h = u. Then the limit above (along the horizontal line $h \in \mathbb{R}$) is

 $\lim_{u \to 0} \frac{\text{Re}(u+0i)}{u+0i} = \lim_{u \to 0} \frac{u}{u} = \lim_{u \to 0} 1 = 1$

But if we use u = 0, so that h = iv, then the limit above (along the vertical line $h \in i\mathbb{R}$) is $\lim_{v \to 0} \frac{\operatorname{Re}(0 + iv)}{0 + iv} = \lim_{v \to 0} \frac{0}{iv} = \lim_{v \to 0} 0 = 0.$

Since these two limits disagree, the overall limit defining $\operatorname{Re}'(z)$ diverges. QED Re

For any $z \in \mathbb{C}$, the limit definition of the derivative of $\operatorname{Im}(z)$ is $\operatorname{Im}'(z) = \lim_{h \to 0} \frac{\operatorname{Im}(z+h) - \operatorname{Im}(z)}{h} = \lim_{h \to 0} \frac{\operatorname{Im} h}{h}.$ Writing h = u + iv, first let v = 0, so that h = u. Then the limit above (along the horizontal line

 $\lim_{u \to 0} \frac{\operatorname{Im}(u+0i)}{u+0i} = \lim_{u \to 0} \frac{0}{u} = \lim_{u \to 0} 0 = 0$

 $h \in \mathbb{R}$) is

But if we use u = 0, so that h = iv, then the limit above (along the vertical line $h \in i\mathbb{R}$) is

 $\lim_{v \to 0} \frac{\operatorname{Im}(0+iv)}{0+iv} = \lim_{v \to 0} \frac{v}{iv} = \lim_{v \to 0} -i = -i.$

Since these two limits disagree, the overall limit defining Im'(z) diverges.

QED Im

Problem 4. II.3, #2. Prove that the functions $u = \sin x \sinh y$ and $v = \cos x \cosh y$ satisfy the Cauchy-Riemann equations. Then find a function f(z) (with a simple formula in terms of z) so that f = u + iv. (And of course, prove/verify that this formula holds.)

Proof. We compute
$$\frac{\partial u}{\partial x} = \cos x \sinh y$$
 and $\frac{\partial v}{\partial y} = \cos x \sinh y = \frac{\partial u}{\partial x}$.
Similarly, We compute $\frac{\partial u}{\partial y} = \sin x \cosh y$ and $\frac{\partial v}{\partial x} = -\sin x \cosh y = -\frac{\partial u}{\partial y}$. QED

By I.8 #1(a) [from HW3], we have $\cos(z+w) = \cos z \cos w - \sin z \sin w$.

Thus, using the formulas $\cos(iz) = \cosh(z)$ and $\sin(iz) = i \sinh(z)$ from Section I.8 (page 30), we have $\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$.

Therefore, $f = u + iv = \sin x \sinh y + i \cos x \cosh y = i \cos(x + iy) = i \cos(z)$. So $f(z) = i \cos(z)$

Problem 5. II.3, #3. Let $D \subseteq \mathbb{C}$ be a domain and let $f : D \to \mathbb{C}$. Suppose that both f(z) and its complex conjugate $\overline{f}(z)$ are analytic on D. Prove that f is constant on D.

Proof. Write f = u + iv, so that $\overline{f} = u - iv$. Since both are analytic, we have $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$, by the first Cauchy-Riemann equation for f and for \overline{f} , respectively. Thus, $\frac{\partial u}{\partial x} = 0$ on D. Similarly, the second Cauchy-Riemann equations for f and for \overline{f} give us $-\frac{\partial v}{\partial x} = \frac{\partial u}{\partial u} = \frac{\partial v}{\partial x}$.

Thus, $\frac{\partial v}{\partial x} = 0$ on D.

By equation (3.1), then, we have $f' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0$ on *D*. By the Theorem on page 49, it follows that *f* is constant on *D*. QED