
Math 345, Fall 2024

Solutions to Homework #5

Problem 1. Let {an} ⊆ C be a sequences. Prove that lim
n→∞

an = 0 if and only if lim
n→∞

|an| = 0

Proof. (⇒) Given ε > 0, there is some N ≥ 1 such that for all n ≥ N , we have |an − 0| < ε.
Given n ≥ N , we have

∣∣|an| − 0
∣∣ = |an| = |an − 0| < ε QED (⇒)

(⇐) Given ε > 0, there is some N ≥ 1 such that for all n ≥ N , we have
∣∣|an| − 0

∣∣ < ε.
Given n ≥ N , we have |an − 0| = |an| =

∣∣|an| − 0
∣∣ < ε QED

Problem 2. II.1, #1(c): Let p > 1. Prove that lim
n→∞

2np + 5n+ 1

np + 3n+ 1
= 2.

Proof. Multiplying top and bottom by n−p gives

lim
n→∞

2np + 5n+ 1

np + 3n+ 1
= lim

n→∞

2 + 5n−(p−1) + n−p

1 + 3n−(p−1) + n−p
=

2 + 0 + 0

1 + 0 + 0
= 2, as desired.

Here, we have used the fact that limn→∞ n−r = 0 for r > 0 (i.e., equation (1.1) page 34), as well as
the arithmetic laws for limits (i.e., the Theorem on page 34). QED

Problem 3. II.1, #1(d): Let z ∈ C. Prove that lim
n→∞

zn

n!
= 0.

Proof. We claim that lim
n→∞

|z|n

n!
= 0.

To prove this claim, let N be a positive integer with N > |z|, and let M =
|z|N

N !
≥ 0. Then for any

n ≥ N , we have

0 ≤ |z|n

n!
= M

n∏
k=N+1

|z|
k

≤ M

(
|z|
N

)n−N

= Mrn−N ,

where r =
|z|
N

. Since 0 ≤ r < 1, we have

lim
n→∞

Mrn−N = M lim
n→∞

rn−N = M · 0 = 0.

In addition, we have limn→∞ 0 = 0. Combining these two limits with the bound above that 0 ≤ |z|n

n!
≤

Mrn−N , the Squeeze Law (or In-Between Theorem) gives us lim
n→∞

|z|n

n!
= 0, proving our claim.

Finally, since

∣∣∣∣znn!
∣∣∣∣ = |z|n

n!
, the desired result is immediate from Problem 1.

Problem 4. II.1, #7: Define a sequence {x0}n≥0 ⊆ R inductively by x0 = 0, and xn+1 = x2n + 1
4 for

each n ≥ 0. Prove that lim
n→∞

xn =
1

2
.

Proof. First, we claim that {xn} is increasing. That is, given any n ≥ 0, we must show that
xn+1 ≥ xn. We have

xn+1 − xn = x2n +
1

4
− xn =

(
xn − 1

2

)2

≥ 0,

since xn ∈ R. Thus, xn+1 ≥ xn, as claimed.



Second, we claim that xn ≤ 1

2
for every n ≥ 0. We prove this by induction on n ≥ 0. For n = 0, we

have x0 = 0 ≤ 1

2
, as desired.

Now assume xn ≤ 1

2
for some particular n ≥ 0; we will show the bound for n+ 1. We have

1

2
− xn+1 =

1

2
−
(
x2n +

1

4

)
=

1

4
− x2n =

(
1

2
+ xn

)(
1

2
− xn

)
≥ 1

2
· 0 = 0.

Here, we used the fact that xn ≥ 0 by our first claim, as well as the inductive hypothesis that xn ≤ 1

2
.

Thus, xn+1 ≤
1

2
, proving our second claim.

Thus, {xn} is a bounded, increasing sequence. By the Monotone Sequence Theorem, it converges to
some real number L ∈ R. Therefore,

L2 +
1

4
=

(
lim
n→∞

xn

)2
+

1

4
= lim

n→∞

(
x2n +

1

4

)
= lim

n→∞
xn+1 = L.

Rearranging, the real number L satisfies L2 − L+
1

4
= 0, and hence

(
L− 1

2

)2

= 0.

Thus, L− 1

2
= 0, and hence L =

1

2
. QED

Problem 5. Prove that R is a closed but not open subset of C.

Proof. (Closed): We must prove that C ∖ R is open. Given z0 ∈ C ∖ R, let y0 = Im z0, which is a
nonzero real number. Let r = |y0| > 0. We claim that the disk D(z0, y) is contained in C∖ R.

To prove this claim, given z ∈ D(z0, y), we have

r =
∣∣ Im(z0)

∣∣ = ∣∣ Im(z)− Im(z − z0)
∣∣ ≤ ∣∣ Im(z)

∣∣+ ∣∣ Im(z − z0)
∣∣ ≤ ∣∣ Im(z)

∣∣+ ∣∣z − z0
∣∣ < ∣∣ Im(z)

∣∣+ r.

Thus,
∣∣ Im(z)

∣∣ > 0, so that Im z ̸= 0, and hence z ̸∈ R. That is, z ∈ C∖ R, proving the claim

Hence, we have proven that C∖ R. Equivalently, R is closed. QED Closed

(Not Open): We will show that there is no open disk centered at 0 ∈ R that is contained in R.

Given r > 0, let z =
ri

2
. Then z ∈ C∖R. In addition, |z− 0| = |z| = r

2
< r, proving that z ∈ D(0, r).

So D(0, r) ̸⊆ C∖ R. QED Not Open
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