Math 345, Fall 2024

Solutions to Homework #4

Problems 1–2. Fix $c \in \mathbb{C}$. Prove that the constant function f(z) = c and the identity function g(z) = z are continuous on all of \mathbb{C} .

Proof. For
$$f(z) = c$$
 Given $z_0 \in \mathbb{C}$ and $\varepsilon > 0$, let $\delta = 1 > 0$.
Given $z \in \mathbb{C}$ with $0 < |z - z_0| < \delta$, we have $|f(z) - f(z_0)| = |c - c| = 0 < \varepsilon$ QED

For g(z) = z Given $z_0 \in \mathbb{C}$ and $\varepsilon > 0$, let $\delta = \varepsilon > 0$. Given $z \in \mathbb{C}$ with $0 < |z - z_0| < \delta$, we have $|g(z) - g(z_0)| = |z - z_0| < \delta = \varepsilon$ QED

Problems 3–6. Prove that each of the four functions

$$z \mapsto \operatorname{Re} z, \qquad z \mapsto \operatorname{Im} z, \qquad z \mapsto |z|, \qquad z \mapsto \overline{z}$$

is continuous on all of \mathbb{C} .

Proof. For $\operatorname{Re} z$ Given $z_0 \in \mathbb{C}$ and $\varepsilon > 0$, let $\delta = \varepsilon > 0$.	
Given $z \in \mathbb{C}$ with $0 < z - z_0 < \delta$, we have	
$ \operatorname{Re}(z) - \operatorname{Re}(z_0) = \operatorname{Re}(z - z_0) \le z - z_0 < \delta = \varepsilon$	QED

 $\begin{array}{|c|c|} \hline \text{For } |z| & \text{Given } z_0 \in \mathbb{C} \text{ and } \varepsilon > 0, \text{ let } \delta = \varepsilon > 0. \\ \hline \text{Given } z \in \mathbb{C} \text{ with } 0 < |z - z_0| < \delta, \\ \text{observe that } |z| = |(z - z_0) + z_0| \leq |z - z_0| + |z_0|, \text{ and hence } |z| - |z_0| \leq |z - z_0|. \\ \hline \text{Similarly, } |z_0| - |z| \leq |z - z_0|. \text{ Since } |z| \text{ and } |z_0| \text{ are real numbers, we have } \left||z| - |z_0|\right| \leq |z - z_0|. \\ \hline \text{Thus, } \left||z| - |z_0|\right| \leq |z - z_0| < \delta = \varepsilon \end{array}$

 $\begin{array}{|c|c|} \hline \text{For } \overline{z} & \text{Given } z_0 \in \mathbb{C} \text{ and } \varepsilon > 0, \text{ let } \delta = \varepsilon > 0. \\ \hline \text{Given } z \in \mathbb{C} \text{ with } 0 < |z - z_0| < \delta, \text{ we have} \\ \hline |\overline{z} - \overline{z_0}| = |\overline{z - z_0}| = |z - z_0| < \delta = \varepsilon \\ \end{array}$

Problem 7. Let $D \subseteq \mathbb{C}$, let $f, g: D \to \mathbb{C}$, let $z_0 \in D$, let $L, M \in \mathbb{C}$, and suppose that $\lim_{z \to z_0} f(z) = L$ and $\lim_{z \to z_0} g(z) = M$. Prove that $\lim_{z \to z_0} f(z) \cdot g(z) = LM$.

QED

Proof. Since $\lim_{z\to z_0} g(z) = M$, there exists $\gamma > 0$ such that for any $z \in D$ with $0 < |z - z_0| < \gamma$, we have |g(z) - M| < 1.

Thus, for any such z, we have $|g(z)| \le |g(z) - M| + |M| < 1 + |M|$.

[Note, in particular, that 1 + |M| > 0, so we may divide by 1 + |M| later. Similarly for 1 + |L|.]

Given $\varepsilon > 0$, there exist $\delta_1, \delta_2 > 0$ such that:

For any $z \in D$ with $0 < |z - z_0| < \delta_1$, we have $|f(z) - L| < \frac{\varepsilon}{2(1 + |M|)}$, and

For any $z \in D$ with $0 < |z - z_0| < \delta_2$, we have $|g(z) - M| < \frac{\varepsilon}{2(1 + |L|)}$.

Let $\delta = \min\{\gamma, \delta_1, \delta_2\} > 0$. Given $z \in D$ with $0 < |z - z_0| < \delta$, we have

$$\begin{split} \left| f(z)g(z) - LM \right| &\leq \left| f(z)g(z) - Lg(z) \right| + \left| Lg(z) - LM \right| = \left| f(z) - L \right| \cdot \left| g(z) \right| + \left| L \right| \cdot \left| g(z) - M \right| \\ &< \frac{\varepsilon}{2(1+|M|)} \cdot (1+|M|) + \left| L \right| \cdot \frac{\varepsilon}{2(1+|L|)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$
 QED

Problems 8–9. Let $a \in \mathbb{C}$ and r > 0. Prove that the open disk D(a, r) is indeed an open set, and that the closed disk $\overline{D}(a, r)$ is indeed a closed set.

Proof. D(a,r) is open Given $z_0 \in D(a,r)$, we have $|z_0 - a| < r$. Define $s = r - |z_0 - a| > 0$. We claim that $D(z_0, s) \subseteq D(a, r)$.

Given $z \in D(z_0, s)$, we have $|z - a| \le |z - z_0| + |z_0 - a| < s + |z_0 - a| = r$, and hence $z \in D(a, r)$. Thus, we have proven our claim and hence proven that D(a, r) is open. QED

 $\left|\overline{D}(a,r) \right|$ closed We must show that $\mathbb{C} \smallsetminus \overline{D}(a,r)$ is open.

Given $z_0 \in \mathbb{C} \setminus \overline{D}(a, r)$, we have $|z_0 - a| > r$. Define $s = |z_0 - a| - r > 0$. We claim that $D(z_0, s) \subseteq \mathbb{C} \setminus \overline{D}(a, r)$. Given $z \in D(z_0, s)$, we have $|z_0 - a| \le |z_0 - z| + |z - a|$, and hence $|z - a| \ge |z_0 - a| - |z_0 - z| > |z_0 - a| - s = r$. Therefore, $z \in \mathbb{C} \setminus \overline{D}(a, r)$.

Thus, we have proven our claim and hence proven that $\mathbb{C} \smallsetminus \overline{D}(a, r)$ is open. That is, $\overline{D}(a, r)$ is closed.

QED