Math 345, Fall 2024

Solutions to Homework $#3$

I.6, $\#1(a,b,c,d)$ Find and plot (all values of) log z, specifying the principal value Log z. (a): 2. (b): *i*. (c): $1 + i$. (d): $(1 + i\sqrt{3})/2$.

Solutions. (a) We have $|2| = 2$ and $\text{Arg } 2 = 0$, so that $\arg 2 = 0 + 2\pi \mathbb{Z}$. Therefore, with $z = 2$, $\log z = \log 2 + 2\pi n i$ for all integers $n \in \mathbb{Z}$ The principal value is $|\log 2|$ (i.e., for $n = 0$). Here's the plot (not to scale):

(b) We have $|i| = 1$ and $\text{Arg } i = \pi/2$, so that $\text{arg } i = \pi/2 + 2\pi\mathbb{Z}$. Therefore, with $z = i$, $\left[\log z = (\pi/2 + 2\pi n)i\right]$ for all integers $n \in \mathbb{Z}$

The principal value is $\boxed{\pi i/2}$ (i.e., for $n = 0$). Here's the plot (not to scale):

(c) We have $|1 + i|$ = $\sqrt{2}$ and Arg $(1+i) = \pi/4$, so that $\arg(1+i) = \pi/4 + 2\pi\mathbb{Z}$. Therefore, with $z = 1 + i$, $\log z = \frac{1}{2}$ $\frac{1}{2} \log 2 + (\pi/4 + 2\pi n)i$ for all integers $n \in \mathbb{Z}$ The principal value is $\frac{1}{2} \log 2 + \pi i/4$ (i.e., for $n = 0$). Here's the plot (not to scale):

(d) Note that $\cos(\pi/3) = 1/2$ and $\sin(\pi/3) = \sqrt{3}/2$. Thus, $|(1 + i\sqrt{3})/2| = 1$ and $\text{Arg}((1 + i\sqrt{3})/2) = \pi/3$, so that $\arg i = \pi/3 + 2\pi\mathbb{Z}$. Therefore, with $z = 1 + i\sqrt{3}/2$, $\log z = (\pi/3 + 2\pi n)i$ for all integers $n \in \mathbb{Z}$ The principal value is $|\pi i/3|$ (i.e., for $n = 0$). Here's the plot (not to scale):

I.6, $\#2(a,b,d)$ Sketch the image under $w = \text{Log } z$ of each of the following regions: (a): The right **half-plane Re z** > 0. (b): The half-disk $|z| < 1$, Re $z > 0$. (d): The slit annulus $\sqrt{e} < |z| < e^2$, $z \notin (-e^2, -\sqrt{e})$

Solutions. (a) In polar, this half-plane is $-\pi/2 < \text{Arg } z < \pi/2$. With no restrictions on the modulus of z, log|z| can be any real number. Thus, the image is the horizontal strip $-\pi/2 <$ Im $w < \pi/2$. Here's the picture:

⁽b) In polar, this half-disk is $0 < |z| < 1$ and $-\pi/2 <$ Arg $z < \pi/2$. Thus, $-\infty <$ log $|z| < 0$, and the image is the half-strip $-\pi/2 <$ Im $w < \pi/2$ with Re $w < 0$. Here's the picture:

(d) In polar, this region is $\sqrt{e} < |z| < e^2$ and $-\pi < \text{Arg } z < \pi$. Thus, $1/2 < \log |z| < 2$, and the image is the rectangle $-\pi < \text{Im } w < \pi$ with $1/2 < \text{Re } w < 2$. Here's the picture:

I.7, $\#1(a,b)$ Find and plot all values of: (a) $(1+i)^i$. (b) $(-i)^{1+i}$.

Solutions. By definition, $(1 + i)^i = e^{i \log(1+i)}$. By problem I.6 $\#1(c)$, $\log(1 + i) = \frac{1}{2} \log 2 + (\pi/4 + 2\pi n)i$ for $n \in \mathbb{Z}$. So $i \log(1 + i) = -(\pi/4 + 2\pi n) + (\frac{1}{2} \log 2)i$ for $n \in \mathbb{Z}$. So

$$
(1+i)^i = e^{i \log(1+i)} = e^{-\pi/4} e^{-2\pi n} e^{i \log \sqrt{2}}
$$
 for $n \in \mathbb{Z}$,

which are complex numbers of argument $\log \sqrt{2}$, which is fairly small but positive. [You don't need to compute it, but FYI, it's about 0.34 radians, or just under 20◦ .] Here's the plot:

(The dots extend infinitely up and down the ray in the first quadrant, and the successive gaps between them increase by a factor of $e^{2\pi}$ as we head away from the origin.)

(b) By definition, $(-i)^{1+i} = e^{(1+i) \log(-i)}$. We have $|-i|=1$ and $Arg(-i)=-\pi/2$, so $log(-i)=(2\pi n-\pi/2)i$ for $n \in \mathbb{Z}$. Therefore $(1 + i) \log(-i) = (\pi/2 - \pi i/2) + (2\pi + 2\pi i)n$ for $n \in \mathbb{Z}$. Note that $e^{\pi/2 - \pi i/2} = e^{\pi/2} e^{-\pi i/2} = -e^{\pi/2} i$ and $e^{2\pi + 2\pi i} = e^{2\pi} e^{2\pi i} = e^{2\pi}$. Thus,

$$
(-i)^{1+i} = e^{(1+i)\log(-i)} = (-e^{\pi/2}i)(e^{2\pi})^n = -e^{\pi/2+2\pi n}i
$$
 for $n \in \mathbb{Z}$,

which are purely imaginary complex numbers with negative imaginary part. Here's the plot:

(The dots extend infinitely up and down the negative imaginary axis, and the successive gaps between them increase by a factor of $e^{2\pi}$ as we head away from the origin.)

I.8, $\#1(a)$ Prove the identity $\cos(z+w) = \cos z \cos w - \sin z \sin w$. **Proof.** For any $z, w \in \mathbb{C}$, we have $\cos(z+w) = \frac{1}{2}$ $\left(e^{i(z+w)}+e^{-i(z+w)}\right)=\frac{1}{4}$ 4 $(2e^{i(z+w)} + 2e^{-i(z+w)})$ $=\frac{1}{4}$ 4 $\left(e^{i(z+w)}+e^{i(z-w)}+e^{i(w-z)}+e^{-i(z+w)}+e^{i(z+w)}-e^{i(z-w)}-e^{i(w-z)}+e^{-i(z+w)}\right)$ $=\frac{1}{4}$ 4 $\left[(e^{iz} + e^{-iz}) (e^{iw} + e^{-iw}) + (e^{iz} - e^{-iz}) (e^{iw} - e^{-iw}) \right]$ $=\frac{1}{2}$ 2 $(e^{iz} + e^{-iz}) \cdot \frac{1}{2}$ 2 $(e^{iw} + e^{-iw}) - \frac{1}{2}$ $2i$ $(e^{iz} - e^{-iz}) \cdot \frac{1}{2}$ $2i$ $(e^{iw} - e^{-iw})$ $= \cos z \cos w - \sin z \sin w$ QED

I.8, #4 Prove that $\tan^{-1} z = \frac{1}{2}$ $\frac{1}{2i}\log\left(\frac{1+iz}{1-iz}\right)$ by proving that $\tan w = z$ if and only if $2iw$ is one of the values of $\log\left(\frac{1+iz}{1-iz}\right)$.

Proof. Given $z, w \in \mathbb{C}$, we proceed by a chain of if-and-only-if's, as follows:

$$
\tan w = z \iff \frac{\sin w}{\cos w} = z \iff \frac{e^{iw} - e^{-iw}}{2i} \cdot \frac{2}{e^{iw} + e^{-iw}} = z \iff \frac{e^{iw} - e^{-iw}}{e^{iw} + e^{-iw}} = iz
$$

$$
\iff \frac{e^{2iw} - 1}{e^{2iw} + 1} = iz \iff e^{2iw} - 1 = ize^{2iw} + iz \iff e^{2iw} (1 - iz) = 1 + iz
$$

$$
\iff e^{2iw} = \frac{1 + iz}{1 - iz} \iff 2iw = \log\left(\frac{1 + iz}{1 - iz}\right)
$$
QED