Math 345, Fall 2024

Solutions to Homework #20
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Problem 1. VIL.2, #9. Show that /OO PR dr = 5 [1 — 62].
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where it has simple poles. Of those poles, only z =4 lies(ins?(—ie )the semicircular contour.
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With I'p denoting the semicircular arc portion of the semicircular contour and zx 4 ¢y on I'g, we have

|e2| = |e?®e~2Y| = e72Y < 1, s0 that [1 — 2| <1+ 1=2.
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Solution. Since sin’®z = 5(1 — cos 2z), define f(z) = , which is analytic except at z = 41,

The derivative of the denominator of f is 4z, so by Rule 3, Res[f,i] =

z2=1

Thus, for R > 1 and z on I'g, we have |f(z)]

R
By the M L-estimate, we have 0 < ‘ f(z)dz| < R;r T 0 as R — oo. Therefore,
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2mi(1 — 1
/OO f(z)dz = ngl;o 7Rf(z) dz = ngléo . f(z)dz = 2miRes[f,i] = m(4ie) = g {1 — 62]
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So taking the real part — noting that Re f(x) = 221 1) = 21 forreR—
x x
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the original integral is g [1 — 2] , as desired.
e

Problem 2. VII.4, #1. Let a € R with 0 < a < 1. By integrating around the keyhole contour, show

that
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/ ::/: dr = — il .
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Solution. Define f(z) = 1Z+ on the slit plane C \ [0,00), with a simple pole at z = —1, where
z

27% = ¢%1982 for the branch of log given by log z = log || + iarg(z) for 0 < arg z < 2.

The derivative of the denominator is 1, so by Rule 3, Res|[f, —1] = e~ #1087 = ¢~ (0+im) — g—ima

z=—1
For 0 < e <1< R, let I'g and 7. denote the circles of radius R and ¢ as in the keyhole contour (with
the former traced counterclockwise and the latter traced clockwise).
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For z on ', we have |z7% = R™%, so | f(2)]|

By the M L-estimate, we have 0 < f(2) dz' < — 0 as R — oo, since a > 0.
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For z on 7., we have |z7% =¢7% so |f(2)] = ‘1:_ p <e - |z|= o
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On the other hand, since the region D enclosed by the keyhole contour 0D contains the pole z = —1,
R €
we have 2rie” ™ = 2mi Res[f,i] = / f(z)dz+ | f(z)dz —i—/ f(z)dx —|—/ f(z)dx,
I'r Ve € R

—0ase — 07, since l—a > 0.

By the M L-estimate, we have 0 < / f(z)dz




where arg x = 0 in the second-to-last integral, and argz = 27 in the last integral.
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That is, in the second-to-last integral, we have f(x) = ,
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and in the last integral, we have f(z) = 11z
x
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dx.
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The sum of these last two integrals, then, is (1 — e~ 2™) /
3
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dx, so that
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Taking the limit as e — 0T and R — 0o, then, we have 2mie™"™® = (1 — 6_2”“)/ T
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dx = 5ira =T — = — = — , as desired.
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Problem 3. VII.4, #3. Let a € R with 0 < a < 1. By integrating around the keyhole contour, show
that

/°° log x 72 cos(ma)
dr = ——
o z%x+1) sin”(7a)
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27% = ¢~*1982 and for both appearances of log, we use the branch of log given by
log z = log |z| + targ(z) for 0 < argz < 2.

Solution. Define f(z) = on the slit plane C \ [0, 00), with a simple pole at z = —1, where

The derivative of the denominator is 1, so by Rule 3,
Res[f, —1] = e %18 ]og 2 = e~ O+ () = e,
=—

For 0 < e <1< R, let I'g and 7. denote the circles of radius R and ¢ as in the keyhole contour (with
the former traced counterclockwise and the latter traced clockwise).
For z on I'r, we have |z7% = R™*. We also have |logz| = |log R + iargz| < log R + 2m. Thus,
R™*logz| =R *(logR+2m) R *(logR+ 2m)
|f(2)] = < — = — :
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By the M L-estimate, we have

2rR)R“(log R + 2 2rR™“log R + 4m*R™°
0< f(z)dz S(W) (log —|—7r): T og it om — 0 as R — oo, since a > 0,
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and since lim 08t _ li / = lim —R™“ =0 by L’Hopital’s Rule, again because a > 0.
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For z on 7., we have |z27% = 7% We also have |logz| = |loge + iargz| < log% + 2. Thus,
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By the M L-estimate, we have
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0< f(z)dz| < —0ase— 0", since 1 —a > 0.
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Here, we have also used the fact that
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lim el %log = = lim ——2° = i / _ lim £17% — 0 by L’Hopital’s Rule,
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again because 1 —a > 0.

On the other hand, since the region D enclosed by the keyhole contour 0D contains the pole z = —1,
R 5
we have (27i) - ime™ ™ = 27i Res[f,i] = / f(z)dz+ | f(2)d= —|—/ f(z)dx + / f(z)dz,
I'r Ye € R
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where arg x = 0 in the second-to-last integral, and argz = 27 in the last integral.
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That is, in the second-to-last integral, we have f(x) = &,
x*(x +1)
—2ima 1 278 72i7ra1 27 —2ima
and in the last integral, we have f(z) = ¢ (log z + 2mi) . 08T e
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The sum of these last two integrals, then, is (1 — e~ ='"%) / ————dx — 2mie” 7™ / dz
. 2%z +1) . 14z

Taking the limit as € — 0™ and R — oo, then, we have
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Therefore, using the value of the second integral that we computed in Problem 2, we have
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i 0 £t == .Cgs(ﬁa), as desired.
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Problem 4. VII.4 #3, continued, just for fun. Without worrying about switching orders of derivatives
and integral signs, “check” the result of the previous problem by differentiating both sides of the
formula in Problem 2 (i.e., VII.4 #1) with respect to a, to confirm that we get the formula in Problem 3.
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Solution. The derivative of a _ ¢ with respect to a is 08T € o8 .
1+ 1+ 1+ x4 (x +1)
That is, the derivative of the integrand in Problem 2 is the negative of the integrand in Problem 3.
_ ) 2
The derivative of — il with respect to a is WC_OS(ML)Q T__T7 .cgs(wa).
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That is, the derivative of the right side in Problem 2 is the negative of the right side in Problem 3.

Taking negatives, then, the derivative (with respect to a) of the formula in Problem 2 gives the formula
in Problem 3.



