
Math 345, Fall 2024

Solutions to Homework #20

Problem 1. VII.2, #9. Show that

∫ ∞

−∞

sin2 x

x2 + 1
dx =

π

2

[
1− 1

e2

]
.

Solution. Since sin2 x =
1

2
(1 − cos 2x), define f(z) =

1− e2iz

2(z2 + 1)
, which is analytic except at z = ±i,

where it has simple poles. Of those poles, only z = i lies inside the semicircular contour.

The derivative of the denominator of f is 4z, so by Rule 3, Res[f, i] =
1− e2iz

4z

∣∣∣∣
z=i

=
1− e−2

4i
.

With ΓR denoting the semicircular arc portion of the semicircular contour and zx+ iy on ΓR, we have
|e2iz| = |e2ixe−2y| = e−2y ≤ 1, so that |1− e2iz| ≤ 1 + 1 = 2.

Thus, for R > 1 and z on ΓR, we have |f(z)| = |1− e2iz|
2|z2 + 1|

≤ 2

2(|z|2 − 1)
=

1

R2 − 1
.

By the ML-estimate, we have 0 ≤
∣∣∣∣ ∫

ΓR

f(z) dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R → ∞. Therefore,∫ ∞

−∞
f(z) dz = lim

R→∞

∫ R

−R
f(z) dz = lim

R→∞

∫
∂DR

f(z) dz = 2πiRes[f, i] =
2πi(1− e−2)

4i
=

π

2

[
1− 1

e2

]
.

So taking the real part — noting that Re f(x) =
1− cos 2x

2(x2 + 1)
=

sin2 x

x2 + 1
for x ∈ R —

the original integral is
π

2

[
1− 1

e2

]
, as desired.

Problem 2. VII.4, #1. Let a ∈ R with 0 < a < 1. By integrating around the keyhole contour, show
that ∫ ∞

0

x−a

1 + x
dx =

π

sin(πa)
.

Solution. Define f(z) =
z−a

1 + z
on the slit plane C ∖ [0,∞), with a simple pole at z = −1, where

z−a = e−a log z for the branch of log given by log z = log |z|+ i arg(z) for 0 < arg z < 2π.

The derivative of the denominator is 1, so by Rule 3, Res[f,−1] = e−a log z
∣∣∣
z=−1

= e−a(0+iπ) = e−iπa.

For 0 < ε < 1 < R, let ΓR and γε denote the circles of radius R and ε as in the keyhole contour (with
the former traced counterclockwise and the latter traced clockwise).

For z on ΓR, we have |z−a| = R−a, so |f(z)| = R−a

|1 + z|
≤ R−a

|z| − 1
=

R−a

R− 1
.

By the ML-estimate, we have 0 ≤
∣∣∣∣ ∫

ΓR

f(z) dz

∣∣∣∣ ≤ (2πR)R−a

R− 1
=

2πR−a

1−R−1
→ 0 as R → ∞, since a > 0.

For z on γε, we have |z−a| = ε−a, so |f(z)| = ε−a

|1 + z|
≤ ε−a1− |z| = ε−a

1− ε
.

By the ML-estimate, we have 0 ≤
∣∣∣∣ ∫

γε

f(z) dz

∣∣∣∣ ≤ (2πε)ε−a

1− ε
=

2πε1−a

1− ε
→ 0 as ε → 0+, since 1−a > 0.

On the other hand, since the region D enclosed by the keyhole contour ∂D contains the pole z = −1,

we have 2πie−iπa = 2πiRes[f, i] =

∫
ΓR

f(z) dz +

∫
γε

f(z) dz +

∫ R

ε
f(x) dx+

∫ ε

R
f(x) dx,



where arg x = 0 in the second-to-last integral, and arg x = 2π in the last integral.

That is, in the second-to-last integral, we have f(x) =
x−a

1 + x
,

and in the last integral, we have f(x) =
x−a · e−2iπa

1 + x
.

The sum of these last two integrals, then, is (1− e−2iπa)

∫ R

ε

x−a

1 + x
dx.

Taking the limit as ε → 0+ and R → ∞, then, we have 2πie−iπa = (1− e−2iπa)

∫ ∞

0

x−a

1 + x
dx, so that∫ ∞

0

x−a

1 + x
dx =

2πie−iπa

1− e−2iπa
= π · 2i

eiπa − e−iπa
= π · 1

sin(πa)
=

π

sin(πa)
, as desired.

Problem 3. VII.4, #3. Let a ∈ R with 0 < a < 1. By integrating around the keyhole contour, show
that ∫ ∞

0

log x

xa(x+ 1)
dx =

π2 cos(πa)

sin2(πa)

Solution. Define f(z) =
z−a log z

z + 1
on the slit plane C ∖ [0,∞), with a simple pole at z = −1, where

z−a = e−a log z, and for both appearances of log, we use the branch of log given by
log z = log |z|+ i arg(z) for 0 < arg z < 2π.

The derivative of the denominator is 1, so by Rule 3,

Res[f,−1] = e−a log z log z
∣∣∣
z=−1

= e−a(0+iπ)(iπ) = iπe−iπa.

For 0 < ε < 1 < R, let ΓR and γε denote the circles of radius R and ε as in the keyhole contour (with
the former traced counterclockwise and the latter traced clockwise).

For z on ΓR, we have |z−a| = R−a. We also have | log z| = | logR + i arg z| ≤ logR + 2π. Thus,

|f(z)| = R−a| log z|
|1 + z|

≤ R−a(logR+ 2π)

|z| − 1
=

R−a(logR+ 2π)

R− 1
.

By the ML-estimate, we have

0 ≤
∣∣∣∣ ∫

ΓR

f(z) dz

∣∣∣∣ ≤ (2πR)R−a(logR+ 2π)

R− 1
=

2πR−a logR+ 4π2R−a

1−R−1
→ 0 as R → ∞, since a > 0,

and since lim
R→∞

logR

Ra
= lim

R→∞

1/R

aRa−1
= lim

R→∞

1

a
R−a = 0 by L’Hôpital’s Rule, again because a > 0.

For z on γε, we have |z−a| = ε−a. We also have | log z| = | log ε + i arg z| ≤ log 1
ε + 2π. Thus,

|f(z)| = ε−a| log z|
|1 + z|

≤
ε−a(log 1

ε + 2π)

1− ε
=

ε−a(log 1
ε + 2π)

1− ε
.

By the ML-estimate, we have

0 ≤
∣∣∣∣ ∫

γε

f(z) dz

∣∣∣∣ ≤ (2πε)ε−a(log 1
ε + 2π)

1− ε
=

2πε1−a log 1
ε + 4π2ε1−a

1− ε
→ 0 as ε → 0+, since 1− a > 0.

Here, we have also used the fact that

lim
ε→0+

ε1−a log
1

ε
= lim

ε→0+

− log ε

εa−1
= lim

ε→0+

−1/ε

(a− 1)εa−2
= lim

ε→0+

1

a− 1
ε1−a = 0 by L’Hôpital’s Rule,

again because 1− a > 0.

On the other hand, since the region D enclosed by the keyhole contour ∂D contains the pole z = −1,

we have (2πi) · iπe−iπa = 2πiRes[f, i] =

∫
ΓR

f(z) dz +

∫
γε

f(z) dz +

∫ R

ε
f(x) dx+

∫ ε

R
f(x) dx,
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where arg x = 0 in the second-to-last integral, and arg x = 2π in the last integral.

That is, in the second-to-last integral, we have f(x) =
log x

xa(x+ 1)
,

and in the last integral, we have f(x) =
e−2iπa(log x+ 2πi)

xa(x+ 1)
=

e−2iπa log x

xa(x+ 1)
+

2πie−2iπa

xa(x+ 1)

The sum of these last two integrals, then, is (1− e−2iπa)

∫ R

ε

log x

xa(x+ 1)
dx− 2πie−2πia

∫ R

ε

x−a

1 + x
dx

Taking the limit as ε → 0+ and R → ∞, then, we have

−2π2e−iπa = (1− e−2iπa)

∫ ∞

0

log x

xa(x+ 1)
dx− 2πie−2πia

∫ ∞

0

x−a

1 + x
dx.

Therefore, using the value of the second integral that we computed in Problem 2, we have

(1− e−2iπa)

∫ ∞

0

log x

xa(x+ 1)
dx = −2π2e−iπa + 2πie−2πia

(
π

sin(πa)

)
= 2iπ2e−iπa

(
i+

e−iπa

sin(πa)

)
Thus,

∫ ∞

0

log x

xa(x+ 1)
dx =

2ie−iπa

1− e−2iπa
· π2

sin(πa)

(
i sin(πa) + e−iπa

)
=

1

sin(πa)
· π2

sin(πa)

(
eiπa + e−iπa

2

)
=

π2 cos(πa)

sin2(πa)
, as desired.

Problem 4. VII.4 #3, continued, just for fun. Without worrying about switching orders of derivatives
and integral signs, “check” the result of the previous problem by differentiating both sides of the
formula in Problem 2 (i.e., VII.4 #1) with respect to a, to confirm that we get the formula in Problem 3.

Solution. The derivative of
x−a

1 + x
=

e−a log x

1 + x
with respect to a is

− log x · e−a log x

1 + x
= − log x

xa(x+ 1)
.

That is, the derivative of the integrand in Problem 2 is the negative of the integrand in Problem 3.

The derivative of
π

sin(πa)
with respect to a is

−π cos(πa) · π
(sin(πa))2

= −π2 cos(πa)

sin2(πa)
.

That is, the derivative of the right side in Problem 2 is the negative of the right side in Problem 3.

Taking negatives, then, the derivative (with respect to a) of the formula in Problem 2 gives the formula
in Problem 3.
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