
Math 345, Fall 2024

Solutions to Homework #17

Problem 1. VI.1, #1(a). Find all possible Laurent expansions centered at 0 of
1

z2 − z

Solution. Call this function f(z). Its denominator z2 − z = z(z − 1) is zero at z = 0, 1, so that f
is analytic on C∖ {0, 1}. Thus, there are two domains on which to consider Laurent decompositions:
the punctured open disk D1 = {0 < |z| < 1} and the exterior domain D2 = {|z| > 1}.

Write f(z) =
A

z
+

B

z − 1
=

A(z − 1) +Bz

z(z − 1)
=

(A+B)z −A

z2 − z
.

Thus, we must have A = −1 and B = 1, i.e., f(z) =
1

z − 1
− 1

z
.

On D1, we have |z| < 1, so that
1

z − 1
= − 1

1− z
= −

∞∑
k=0

zk.

Thus, the Laurent series on D1 is f(z) = −1

z
−

∞∑
k=0

zk =
∞∑

k=−1

(−1)zk = −1

z
− 1− z − z2 − z3 − · · · .

On D2, we have |z| > 1, so that
1

z − 1
=

1

z
· 1

1− 1
z

=
1

z

∞∑
k=0

1

zk
=

∞∑
k=1

z−k =
−1∑

k=−∞
zk.

Thus, the Laurent series on D2 is f(z) = −z−1 +

−1∑
k=−∞

zk =

−2∑
k=−∞

zk =
1

z2
+

1

z3
+

1

z4
+ · · ·

Problem 2. VI.1, #1(c). Find all possible Laurent expansions centered at 0 of
1

(z2 − 1)(z2 − 4)

Solution. Call this function g(z). Its denominator is zero at z = ±1,±2, so that g is analytic on
C∖ {±1,±2}. Thus, there are three domains on which to consider Laurent decompositions: the open
disk D1 = {|z| < 1}, the open annulus D2 = {1 < |z| < 2}, and the exterior domain D3 = {|z| > 2}.

Write g(z) =
A

z2 − 1
+

B

z2 − 4
=

A(z2 − 4) +B(z2 − 1)

(z2 − 1)(z2 − 4)
=

(A+B)z2 − (4A+B)

(z2 − 1)(z2 − 4)
.

Thus, we must have A = −1/3 and B = 1/3, i.e., f(z) =
−1/3

z2 − 1
+

1/3

z2 − 4
.

On D1, we have |z| < 1, so that
−1/3

z2 − 1
=

1/3

1− z2
=

1

3

∞∑
k=0

z2k,

and
1/3

z2 − 4
=

−1/12

1− z2/4
= − 1

12

∞∑
k=0

z2k

4k
,

Thus, the Laurent series on D1 is f(z) =
1

3

∞∑
k=0

z2k − 1

12

∞∑
k=0

z2k

4k
=

∞∑
k=0

(
1

3
− 1

12 · 4k

)
z2k

On D2, we have 1 < |z| < 2, so that the formula for
1/3

z2 − 4
is the same as for D1, but now

−1/3

z2 − 1
=

−1

3z2
· 1

1− 1
z2

=
−1

3z2

∞∑
k=0

z−2k = −1

3

∞∑
k=0

z−2k−2 = −1

3

−1∑
k=−∞

z2k



Thus, the Laurent series on D2 is f(z) = −1

3

−1∑
k=−∞

z2k − 1

12

∞∑
k=0

z2k

4k

On D3 we have |z| > 2, so that the formula for
−1/3

z2 − 1
is the same as for D2, but now

1/3

z2 − 4
=

1

3z2
· 1

1− 4
z2

=
1

3z2

∞∑
k=0

4kz−2k =
1

3

∞∑
k=0

4kz−2k−2 =
1

3

−1∑
k=−∞

z2k

4k+1

Thus, the Laurent series on D3 is f(z) = −1

3

−1∑
k=−∞

z2k +
1

3

−1∑
k=−∞

z2k

4k+1
=

−1∑
k=−∞

1

3

(
1

4k+1
− 1

)
z2k

Problem 3. VI.2 #1(a). Find all of the isolated singularities (in C, not at ∞) of

f(z) =
z

(z2 − 1)2
. For each such singularity, determine whether it is removable, essential, or a pole.

For each pole, determine its order, and find its principal part.

Solution. The denominator of f(z) =
z

(z2 − 1)2
=

z

(z − 1)2(z + 1)2
is zero only at z = ±1, so f has

singularities at those two points and nowhere else.

At z = 1, we have f(z) = (z − 1)−2h1(z), where h1(z) =
z

(z + 1)2
is analytic at z = 1

with h1(1) = 1/4 ̸= 0. Thus, f has a pole of order 2 at z = 1

We also have h′1(z) =
(z + 1)2 − 2z(z + 1)

(z + 1)4
=

1− z

(z + 1)3
, so that h′1(1) = 0.

Thus, h1(z) =
1

4
+ 0(z − 1)1 + O((z − 1)2), and hence the Laurent series expansion of f at z = 1 is

f(z) =
1

4
(z − 1)−2 +O((z − 1)0). That is, the principal part of f at z = 1 is

1

4
(z − 1)−2

At z = −1, we have f(z) = (z + 1)−2h2(z), where h2(z) =
z

(z − 1)2
is analytic at z = −1

with h2(1) = −1/4 ̸= 0. Thus, f has a pole of order 2 at z = −1

We also have h′2(z) =
(z − 1)2 − 2z(z − 1)

(z − 1)4
=

−1− z

(z − 1)3
, so that h′2(−1) = 0.

Thus, h2(z) =
1

4
+ 0(z − 1)1 + O((z − 1)2), and hence the Laurent series expansion of f at z = 1 is

f(z) = −1

4
(z + 1)−2 +O((z + 1)0). That is, the principal part of f at z = −1 is

−1

4
(z + 1)−2

Note: Alternatively, one could do the partial fractions algebra to write

f(z) =
A

z − 1
+

B

(z − 1)2
+

C

z + 1
+

D

(z + 1)2
and solve to get A = C = 0, B = 1/4, and D = −1/4.

Thus, after doing that annoying algebra, we get f(z) =
1/4

(z − 1)2
− 1/4

(z + 1)2
. From that, we can see

that f has a pole at z = 1 of order 2 (because of the (z − 1)−2 term), with principal part
1/4

(z − 1)2
.

Similarly, f has a pole at z = −1 of order 2 with principal part
−1/4

(z + 1)2
.

2



Problem 4. VI.2 #1(c,e). Find all of the isolated singularities (in C, not at ∞) of the following
functions. For each such singularity, determine whether it is removable, essential, or a pole.

(c)
e2z − 1

z
(e) z2 sin

(
1

z

)
Solutions. (c): The denominator of g(z) =

e2z − 1

z
is zero only at 0, so g has a singularity only at

z = 0.

However, e2z = 1+2z+
(2z)2

2!
= 1+2z+O(z2), so that e2z−1 = 2z+O(z2), and hence g(z) = 2+O(z1).

Thus, g has a removable singularity at z = 0

(e): The function f(z) = z2 sin

(
1

z

)
is analytic on C∖ {0}, so the only singularity is at z = 0.

Plugging 1/z into the standard power series for sine, we have

sin

(
1

z

)
= z−1 − z−3

3!
+

z−5

5!
− z−7

7!
+ · · · , so f(z) = z − z−1

3!
+

z−3

5!
− z−5

7!
+ · · · .

Because infinitely many of the negative-power terms in this Laurent expansion are nonzero,
f has an essential singularity at z = 0

Problem 5. VI.2, #7. Let z0 ∈ C be an isolated singularity of f(z), and suppose that there is
some r > 0 and integer N ≥ 1 so that (z − z0)

Nf(z) is bounded on D(z0, r). Prove that z0 is either
removable or else a pole of order at most N .

Proof. Let g(z) = (z − z0)
Nf(z), which is bounded near z0 by hypothesis. Therefore, by Riemann’s

Theorem on Removable Singularities, g has a removable singularity at z0.

Hence, z0 must be a removable singularity of g. Filling in the appropriate value for g(z0), we may

assume that g is analytic on D(z0, r). Write g(z) =
∑
k≥0

bk(z − z0)
k.

Thus, f(z) = (z − z0)
−Ng(z) = b0(z − z0)

−N + b1(z − z0)
−N+1 + b2(z − z0)

−N+2 + · · ·
either has a pole of order at mostN (if at least one of b0, . . . , bN−1 is nonzero) or a removable singularity
(if b0 = · · · = bN−1 = 0) at z0 QED
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